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1.0 Introduction and Executive Summary

Computer professionals have long promoted the idea that graphical representations of

software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large complex systems. The general

goal of this research is the investigation, formulation and generation of graphical

representations of algorithms, structures, and processes for Ada (GRASP/Ada). The present

task, in which we describe and categorize various graphical representations that can be

extracted or generated from source code, is focused on reverse engineering.

Reverse engineering normally includes the processing of source code to extract higher

levels of abstraction for both data and processes. Our primary motivation for reverse

engineering is increased support for software reusability, verification, and software

maintenance, all of which should be greatly facilitated by automatically generating a set of

"formalized diagrams" to supplement the source code and other forms of existing

documentation. For example, Selby [SEL85] found that code reading was the most cost

effective method of detecting errors during the verification process when compared to

functional testing and structural testing. And Standish [STA85] reported that program

understanding may represent as much as 90% of the cost of maintenance. Hence, improved

comprehension efficiency resulting from the integration of graphical notations and source

code could have a significant impact on the overall cost of software production. The overall

goal of the GRASP/Ada project is to provide the foundation for a CASE (computer-aided

software engineering) environment in which reverse engineering and forward engineering

(development) are tightly coupled. In this environment, the user may specify the software



in a graphically-orientedlanguageand then automaticallygeneratethe correspondingAda

code [ADA83]. Alternatively, the usermay specify the softwarein Ada or Ada/PDL and

thenautomaticallygeneratethe graphicalrepresentationseither dynamically as the code is

enteredor asa form of post-processing.Appendix A containsa comprehensivetaxonomy

of reverseengineering,includingdefinitionsof terms.

Figure 1providesanoverview to thethreephasesof theGRASP/Ariaproject. Ada

sourcecodeor PDL is depictedasthebasicstartingpoint for theGRASP/Adatoolset. Each

phaseis briefly describedbelow. Phases1 and 2 of GRASP/Adahavebeencompletedand

a new graphicalnotation,the Control StructureDiagram(CSD) for Ada andthe supporting

softwaretool is now beingpreparedfor evaluation[CRO88,CRO89,CRO90a-d]. In Phase

3, thefocusis ona subsetof ArchitecturalDiagramsthatcanbegeneratedautomaticallyfrom

sourcecode with the CSD includedfor completeness.Thesearedescribedbriefly in the

orderthat theymight begeneratedin a typical reverseengineeringscenario.

1.1 Phase 1 - The Control Structure Diagram For Ada

Phase 1 concentrated on a survey of graphical notations for software and the

development of a new algorithmic or PDL/code level diagram for Ada. Tentative graphical

control constructs for the Control Structure Diagram (CSD) were created and initially

prototyped in a VAX/VMS environment. This included the development of special

diagramming fonts for both the screen and printer and the development of parser and scanner

using UNIX based tools such as LEX and YACC. Appendix B provides a detailed

description of the CSD and the rationale for its development. The final report for Phase 1

[CRO89] contains a complete description of all accomplishments of Phase 1.
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1.2 Phase 2 - The GRASP/Aria Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.

The development of a user interface based on the X Window System represented a major part

of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as

potential commercial tools upon which to base the GRASP/Ada prototype. Architectural

diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having

the best potential for accurately representing many of the varied architectural features of an

Ada software system. Phase 2 also included the preliminary design and a separate prototype

for an architectural CSD. The best aspects of architectural CSD are expected to be integrated

into the prototype during Phase 3. The final report for Phase 2 [CRO90c] contains a

complete description of the accomplishments of Phase 2.

1.3 Phase 3 - Integration, Evaluation and Release

Phase 3 has two major thrusts: (1) completion and release of an operational

GRASP/Ada prototype which generates CSDs and (2) the analysis, design and development

of a preliminary prototype which generates object diagrams directly from Ada source code.

Completion of the GRASP/Ada CSD prototype includes the development of an intermediate

representation of the CSD to increase efficiency and provide for extensibility. A major

subtask of Phase 3 is preparing the prototype for release to the research community, business

and industry. To date, over 80 requests for information regarding GRASP/Aria have been

received as a result of publications generated from this research. Responding to these

requests are an important element of the ongoing evaluation and refinement of the

GRASP/Ada reverse engineering system.
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The development of a preliminary prototype for generating architectural object

diagrams (ODgen) for Ada source/PDL is an effort to determine feasibility rather than deliver

an operational prototype as above. Research has indicated that the major obstacle for

automatic object diagram generation is the automatic layout of the diagrams in a human

readable and/or aesthetically pleasing format. A user extensible rule base, which automates

the diagram layout task, is currently being formulated. If a satisfactory solution to the layout

problem can be found, the development of the components to recover the information to be

included in the diagram, although a major effort, is expected to be fairly straightforward.

Interactive Development Environment's Software through Pictures ('IDE/StP), which supports

the OOSD notation in a forward engineering sense, has been acquired as a candidate for a

commercial CASE environment with which to integrate GRASP/Ada reverse engineering

system.
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2.0 The System Model

The general system model for the GRASP/Ada prototype is described in this section.

The overall functionality of the system is briefly described from a data flow perspective and

then each of the GRASP/Ada components is presented in the form of a system block diagram.

2.1 GRASP/Ada System Data Flow

Figures 2 and 3 describe the major processes and overall flow of information within

the GRASP/Aria system. The primary input is Ada source code GRASP commands and the

primary outputs are control structure diagrams, object diagrams and library information. The

Ada source code is assumed to be syntactically correct.

2.2 GRASP/Ada System Block Diagram

Figure 4 depicts the major system components hierarchically to illustrate the layers

and component interfaces. The user interface (not shown in the system data flow diagram)

was built using the X Window System and provides general control and coordination among

the other components.

The control structure diagram generator, CSDgen, has its own parser/scanner built

using FLEX and BISON, successors of LEX and YACC. It also includes its own printer

utilities. As such, CSDgen is a self-sufficient component which can be used from the user

interface or the command line without the commercial components required by the object

diagram generation component. A CSD editor, CSDedit (not shown), is currently in the

planning stages. It will provide editing capabilities for directly modifying the CSD produced



Figure 2. GRASP/Ada Context Level Data Flow Diagram
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by CSDgen. Without CSDedit, changes must be made to the source code and then the CSD

must be regenerated.

The object diagram generation component, ODgen, is in the analysis phase. The

feasibility of automatic diagram layout is currently under investigation. Beyond automatic

diagram layout, several design alternatives are being investigated. The major alternatives

include the decision of whether to attempt to integrate GRASP/Aria directly with commercial

components, namely (1) the Verdix Ada development system (VADS) and DIANA interface

for extraction of diagram information and (2) IDE's Software through Pictures, Ada

Development Environment (IDE/StP/ADE) for the display of the object diagrams. Each of

these components are indicated in Figure 4.

The GRASP/Aria library component, GRASPIib, provides for coordination of all

generated items with their associated source code. This facilitates navigation among the

diagrams and the production of sets of diagrams. Both CSDgen and ODgen produce library

entries as Aria source is processed.

In the following sections, the general functional requirements and prototype

implementation (in progress) are described for each of the major GRASP/Aria components:

the control structure diagram generator, the object diagram generator, and the user interface.
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3.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this

section. The detailed specifications and current issues are described below. Examples of the

CSD are presented in conjunction with the User Interface in Section 5.0 and in Appendix C.

The rationale for the development of the CSD, which has been detailed in previous reports

[CRO89, CRO90c], is summarized in Appendix B.

3.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source

file. CSDgen has its own parser/scanner constructed using LEX/YACC based software tools

available with UNIX. Although a complete parse is done during CSD generation, CSDgen

assumes the Ada source code has been previously compiled and thus is syntactically correct.

Currently, little error recovery is attempted when a syntax error is encountered. The diagram

is simply generated clown to the point of the error. The Version 1 and Version 2 CSDgen

prototypes built the diagram directly during the parse by inserting CSD graphics characters

into a file along with text. To increase efficiency and improve extensibility, the Version 3

CSDgen prototype will use an intermediate representation which is described below.

Since GRASP/Ada is expected to be used to process and analyze large existing Ada

software systems consisting of perhaps hundreds of files, an option to generate all the CSDs

at once is required. Generating a set of CSDs can be facilitated by entering *.a or some

other wildcard with a conventional source file extension, for the file name. A CSD

generation summary window should display the progress of the generation by listing each

11



file asit is being processed and any resulting error messages. The summary should conclude

with number of files processed and the number of errors encountered. The default for each

CSD file name is the source file name with .csd appended. As the CSDs are generated, the

GRASP library is updated. Generating a set of CSDs can be considered a user interface

requirement rather than strictly a CSD generator requirement.

3.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase

2. Screen display is facilitated by sending the CSD file to a CSD window opened under an

X Window manager. Printing is accomplished by converting the CSD file to a PostScript file

and then sending it to a printer. Moving to an intermediate representation during Phase 3 will

necessitate the development of a new set of display routines which will be X Window System

based. However, these new routines will increase the flexibility and capability of CSDgen,

thus making it more immediately useful to the research community. Layout/spacing,

collapsing the CSD, and screen and printer fonts are considered below.

Layout/Spacing. The general layout of the CSD is highly structured by design.

However, the user should have control over such attributes as horizontal and vertical spacing

and the optional use of some diagramming symbols. In the Version 2 CSDgen prototype,

horizontal and vertical spacing options were a part of the CSD file generation. In order to

change these options (e.g., from single to double spacing), the CSD file had to be

regenerated. In the Version 3 prototype, these options will be handled by the new display

routines and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options include single, double, and triple spacing (default is single).

Margins have been roughly controlled by the character line length selected, either 80 or 132

12



charactersper line (default is 80). Indentationof the CSD constructs has been a constant

three blank characters. Support for variable margins and indentation are being investigated

in conjunction with the new display routines. In addition, several display options involving

CSD graphical constructs are under consideration. For example, the boxes drawn around

procedure and task entry calls may be optionally suppressed to make the diagram more

compact.

Collapsing the CSD. The CSD window should provide the user with the capability

to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,

procedures, functions, tasks and packages). This capability directly combines the ideas of

chunking with control flow which are major aids to comprehension of software. An

architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on

procedure, function, and task entry calls, and the control constructs that directly affect these

calls. The initial ArchCSD prototype was completely separate from CSDgen and required

complete regeneration of the ArchCSD file for each option. In the Version 3 prototype, the

ArchCSD will be generated by the display routines from the single intermediate

representation of the CSD.

CSD Screen Fonts. The CSD screen font is a bitmap 14 point Courier to which the

CSD graphic characters were added. The font was defined as a bitmap distribution font

(BDF) then converted to SNF format required by the X Window System. Additional screen

fonts may be developed as required.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet

series. These were then implemented as PostScript type 3 fonts and all subsequent font

development has been directed towards the PostScript font. The PostScript font provides the

most flexibility since its size is user selectable from 1 to 300 points.

13



Color. Although color options were briefly investigatedfor both the screenand

printer, it wasdecidedthat they will not bepursuedin theVersion3 prototype.

3.3 Navigating Through Large CSDs - Alternatives

Index (or Table of Contents). An index, similar to that presented in the Xman

application provided with the X Window System for viewing manual pages, is used to

navigate among a system of CSDs. The user clicks on the index entry and the corresponding

CSD is displayed. The index entries would be created as CSDs are generated and stored in

the GRASP/Ada library. Entries in the library are to include procedures, functions, tasks,

task entries, and packages. See Section 6 below for details.

Direct Navigation Via CSD. The user is allowed to click on procedure, function, and

task entry calls in the CSD directly and a separate CSD window is opened containing the

selected CSD or fragment thereof. Two potential problems have been identified with this

approach. Using the mouse for selection may conflict with established editing functions

supported by the mouse. In addition, it may be difficult to relate the characters or CSD

graphical construct with subprogram and entry names. The availability of middle mouse

button for this purpose is being investigated.

3.4 Printing An Entire Set of CSDs

Printing an entire set of CSDs in an organized and efficient manner is an important

capability when considering the typically large size of Ada software systems. A book format

is under consideration which would include a table of contents and/or index. In the event

GRASP/Ada is integrated with IDE/StP/ADE, the StP Document Preparation System could

possibly be utilized for this function.
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3.5 Incremental Changes to the CSD

In the present prototype, there is no capability for editing or incrementally modifying

the CSD. The source code is modified using a text editor and then the CSD is regenerated.

While this has been sufficient for early prototyping, especially for small programs, editing

capabilities are desirable in an operational setting. An editor has been proposed and is briefly

discussed in Section 7.0 Future Requirements.

3.6 Internal Representation of the CSD - Alternatives

Several alternatives are under consideration for the internal representation of the CSD

in the Version 3 prototype. Each has its own merits with respect to processing and storage

efficiency and is briefly described below.

Single ASCII File with CSD Characters and Text Combined. This is the most

direct approach and is currently used in the version 2 prototype. The primary advantage of

this approach is that combining the CSD characters with text in a single file eliminates the

need for elaborate transformation and thus enables the rapid implementation of prototypes as

was the case in the previous phases of this project. The major disadvantages of this approach

are that it does not lend itself to incremental changes during editing and the CSD characters

have to be stripped out if the user wants to send the file to a compiler.

Separate ASCII Files for CSD Characters and Text. In this approach, the file

containing the CSD characters along with placement information would be "merged" with the

prettyprinted source file. The primary advantage of the this approach is that the CSD

characters would not have to be stripped out if the user wants to send the file to a compiler.

The major disadvantage of this approach is that coordinating the two files would add

complexity to generation and editing routines with little or no benefit. As a result, this

15



approachwould bemoredifficult to implementthanthesinglefideapproachandnot provide

the advantagesof thenext alternative.

SingleASCII File Without Hard-coded CSDCharacters. This approachrepresents

a compromisebetweentheprevioustwo. While it uses a single file, only "begin construct"

and "end construct" codes are actually required for each CSD graphical construct in the CSD

file rather than all CSD graphics characters that compose the diagram. In particular, no

continuation characters would be included in the file. These would be generated by the

screen display and print routines as required. The advantages of this approach would be most

beneficial in an editing mode since the diagram could grow and shrink automatically as

additional text/source code is inserted into the diagram. The extent of required modifications

to text edit windows must be considered with this alternative.

Direct Generation From DIANA Net. If tight coupling and integration with a

commercial Ada development system such as Verdix VADS is desired, then direct generation

of the CSD from the DIANA net produced as a result of compilation could be performed.

This would require a layer of software which traverses the DIANA net and calls the

appropriate CSD primitives as control nodes are encountered. This approach would

apparently eliminate the possibility of directly editing the CSD since the DIANA interface

does not support modifying the net, only reading it.

3.7 Additional CSD Constructs

Task Entry and Task Exit Symbols, Label and GOTO Label Symbols. These are

needed to differentiate among a task exit, function return, and goto statement, and between

a task entry and label symbol.

16



Generic Task and Package. Dashed task and package symbols should be used to

distinguish between genetic and non-genetic tasks and between genetic and non-generic

packages.

Function Call. A CSD symbol similar to that used for procedure calls should be used

for function calls for consistency.

Task Entry Call. Currently the task entry symbol is the same as the task definition

symbol (open-ended parallelogram). However, a call to a task entry block is similar

semantically to a procedure call. Hence, it would be more appropriate to use the procedure

symbol for the task entry call in the calling subprogram and the task entry itself in the task.

17



4.0 Object Oriented Design Diagram Generator

The object-oriented design diagram generator, or simply object diagram generator

(ODgen), produces object diagrams (ODs) for a corresponding set of Ada source files. The

detailed specifications and current issues are described below. A preliminary prototype is

expected to be constructed to determine several of the feasibility issues.

4.10Dgen Symbol Set

The OOSD notation [WAS89] has been selected as a basis for the Object Diagram

generator (ODgen). The complete set, which was designed with the intention of using it in

forward engineering, is illustrated in Figure 5. In this section, the feasibility of deriving each

of these symbols during a reverse engineering effort is considered, and the modifications or

supplements needed to render them suitable for the ODgen project are discussed.

Lexical Inclusion of Data Modules. The inclusion of a data module into another

module may be determined from a parse of the Ada source code. If a data module is

considered to be a component which contains no executable statements other than

initializations, then there should be no difficulty in recognizing these modules, and their

inclusion in an OD should cause no problems.

Iterative Calls to Library Modules. Again, this information may be extracted from

a parse of the Ada source code. There should be no difficulty in producing an OD

representation for iterative calls to library modules; however, the composition of this situation

with others, such as conditional module calls, may require further analysis.
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Conditional Module Calls. A conditional call of one module from another can be

recognized during parsing, but the generation of an OD representation may prove difficult

should the conditional call be composed with another type of call. For example, a program

loop may conditionally call another module within the loop's body. How should this be

represented in the OD? Certainly the call is a conditional onc and may be represented using

the conditional module call construct. However, the module is being called repetitively

within a loop, so it may just as well be represented using the itcrative caU construct. Another

possibility is to represent the call using a composition of the two representations, indicating

that the module is called both itcrativcly and conditionally. The problem is that this raises

ambiguity in that the diagram does not indicate whether the call was made conditionally in

the body of a loop, or whether it was made itcratively as the consequence of some condition

being true. This ambiguity must be resolved if the iterative and module call representations

are to be used properly in the OD.

Package Specifications. A package may be recognized from a parse of an Ada

program, and the operations contained within the package may be recognized just as easily.

The direction of the parameters may also be determined syntactically through the presence

of the in, out, and in out parameter designators. However, the distinction of parameters as

either control or data parameters may not be recognized as easily. In fact, it is possible for

parameters to be used as both control and data parameters, so the automated classification of

an operations's parameters as control or data may not be feasible. Finally, the detection of

exceptions may be determined easily through syntactic analysis.

Generic Packages. The specification of a generic package may be recognized easily

from a parse of an Ada program, and the generic parameters which must be specified in an

instantiation of the package, the operations provided by the package, the parameters to the
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operations and their direction may also be recognized syntactically. However, the generic

package suffers from the same problem as the package in the area of detection of control and

data parameters. Again, the automated classification of parameters as either control or data

parameters may not be feasible.

Tasks. The declaration of a task may be recognized syntactically in a parse of an Ada

program. Much of the desired information needed in the creation of an OD representation

of a task may also be obtained from syntactic analysis, such as the entries provided by the

task, the parameters and their associated directions for each of the task entries, and any

guards placed on the task entries. However, there are two items in the OOSD depiction of

a task that may not be obtainable in an automated fashion during reverse engineering. The

In'st of these is the omnipresent problem of distinguishing between control and data

parameters which has already been discussed in previous paragraphs. The second is the

placement of sequencing numbers on the task entries. Only in the most trivial cases may

these numbers be properly derived. In more complex cases, the sequencing numbers would

be meaningless or even misleading, and the OD would probably be better off by omitting

these numbers.

Generic Tasks. The depiction of a genetic task in the OD suffers from many of the

same problems as the depiction of a task, and the reader is referred to the previous paragraphs

for a discussion of these problems. Other than that, the detection and representation of a

generic task should provide no further problems.

Instantiation of Generic Packages. The instantiation of a genetic package in an Ada

program may easily be determined syntactically. The generation of a proper OOSD symbol

for genetic package instantiation will require actual parameters to be matched with formal

parameters. Otherwise, it should pose no difficulty.
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Visibility. The depictionof the semanticvisibility of a packageto a module in an

Aria program may be determinedsyntactically,but the representationmay prove to be

misleading. There are two "varieties" of visibility that must be represented:packages

lexically included in the declarativesectionof the current compilation unit and packages

includedvia thewith clause,which areseparatecompilationunits. For example,a package

in anAdaprogrammayonly bevisible to a smallsectionof amodule (for example,a block

in a modulecontaininga loop may declarethe packagein the declarationareaand call a

function in thepackageiteratively during the loop. The package would therefore be visible

throughout the scope of the block, but would not be visible in the statements preceding and

following the block. Therefore, the depiction of the package as being visible to the module

could be misleading to the user unfamiliar with the underlying code. Although generating

the representation is not difficult, the sensibility of utilizing the representation must be

considered. When visibility is determined by the with clause, a separate icon is, of course,

necessary and appropriate.

Symbol Interconnections and Diagram Layout. The actual automatic layout of the

generated object diagram with respect to symbols and interconnections is the most formidable

problem that must be solved. Whereas the CSD has a flexible but well-defined physical

layout, the OD layout is not well-defined. In fact, the CASE tools that support the OOSD

notation require the users to "manually" arrange the symbols. Determining the feasibility of

an algorithmic and/or heuristic solution which yields a reasonably comprehensible diagram

layout, and then demonstrating it, is a key component of Phase 3.
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4.2 GRASP/Ada ODgen Processing Alternatives

In the development of the ODgen design specification, three distinct development

methods were considered. The major difference among these methods is linked to the degree

of involvement of other commercially available tools and the ability of the user to specify

these tools. The fhst method considered was to create ODgen as a stand-alone system. A

second alternative was to use GRASP/Ada as a driver for a set of subprogram invocations

which would use VADS, ODgen, and StP/ADE in sequence to produce the architectural

diagrams. Finally, the third alternative considered was to use GRASP/Ada as a shell from

which the user could invoke each of the three tools at his convenience. In this section, these

three methods are examined in more detail, and the advantages and disadvantages associated

with each method are outlined.

ODgen Is Independent of Commercial Tools. This method would involve the

development of a stand-alone architectural diagram generator. The generator would not be

dependent on commercial tools such as VADS and StP/ADE. Instead, the parser/scanner

developed in Phases I and 1_ of the GRASP/Ada research project would be extended to

extract the information needed for the representation of architectural diagrams. A method for

specifying or identifying the complete set of files comprising the Ada system would have to

be developed (this may require some involvement from the user). The major advantage of

this method is that the tool would not be subject to the whims of the manufacturers of

commercial tools (i.e., the tool would not be rendered useless if VADS were to become

unsupported, if the DIANA representation were subjected to large-scale change, if the

StP/ADE file formats and representation methods were to be changed, etc.). On the other

hand, this method would involve substantially longer development time, as a tool for

identifying the dependencies among a set of Ada source files would have to be developed.
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In addition, a tool for viewing and printing the architecturaldiagramswould needto be

developed.Becausea substantialamountof effort hasalreadybeenspentin thedevelopment

of the GRASP/AdaXllR4 interface,extendingthis interface to display the architectural

diagramscouldbenefitfrom thegroundworkalreadylaid in PhasesI and17.The major goals

which would need to be accomplished are the development of XllR4 widgets for the

representation of each of the OOSD symbols, and the development of layout heuristics and

modified layout widgets suitable for displaying the OOSD symbols.

ODgen Invokes VADS and StP/ADE. In this method, the ODgen component of

GRASP/Ada would first invoke VADS to generate a DIANA net for the specified set of Ada

source files. ODgen would then traverse this net to obtain the required information and

generate an internal representation for the architectural diagrams. This information would

then be shaped into a format suitable for StP/ADE and saved. Finally, StP/ADE would be

invoked to view the architectural diagram. All of this would be transparent to the user: after

specifying the Ada source files and a number of ODgen options, GRASP/Ada would invoke

the tools in sequence and bring up StP/ADE as a subprocess displaying the generated

diagrams. The major advantage in this approach is that it would utilize already-existing tools

to speed the development effort. Instead of writing yet another Ada parser, intermediate

representation generator and OOSD diagram displayer, the research effort could concentrate

on the task of obtaining architectural details and composing meaningful architectural diagrams

from them. However, relying on commercial tools could be dangerous as subtle changes in

the formats of either the VADS representation or the StP/ADE representation could require

major, sweeping changes in the ODgen system. In addition, the use of commercial tools

could greatly limit the number of potential users for the ODgen system. Instead of only

needing the ODgen system, the user would also need the VADS Ada compiler and the
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StP/ADE softwaredevelopmentsystem- two costly components. For many university

research installations, the costs of these systems would be prohibitive and would virtually

eliminate the potential use of ODgen.

GRASP Runs Independently of VADS and StP/ADE. The user invokes VADS to

create DIANA nets, invokes GRASP to generate CSDs and ODs, and invokes StP/ADE to

view the ODs. In this scenario, the GRASP/Ada interface would be partially customizable

by the user. Instead of relying on a specific Ada intermediate representation generator and

OOSD diagram displayer, the user would be able to select from a limited number of

commercial tools. To accomplish this, a minimal ODgen interface for each tool would be

identified and a suitable data representation would be specified. ODgen would then be

designed to transform the input Ada source data into an architectural diagram representation

in the output format. Then, customizing GRASP/Ada

representations and OOSD diagram formats would consist

for new intermediate Ada

of simply writing a filter

For example, customizingtransforming the data from one representation to another.

GRASP/Ada to work with the VADS DIANA representation would require a filter to be

written to traverse the DIANA nets and store the needed architectural information into a file

in ODgen's input format. Similarly, customizing GRASP/Ada to work with the StP/ADE tool

would require a filter to be written translating the ODgen output format into StP/ADE's input

format. This method would allow GRASP/Ada to be fairly portable without depending on

strict reliance on commercially available tools. On the other hand, this method would require

an extensive and easily translatable interface format to be developed for both ODgen's input

and output formats. Finally, the amount of effort required for the writing of filters for new

representations could be potentially quite large, depending on the format and accessibility of

the new representations.
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4.3 Displaying the OD - Screen and Printer

Generating visual displays of the object diagrams will require display methods to be

generated for the screen and printer. Since the GRASP/Ada interface for Phases I and II was

developed using the X Window System (a portable graphical environment gaining widespread

acceptance) and numerous utilities have been developed in the creation of that interface, the

development of a display mechanism for the object diagrams in X11R4 would be a logical

extension to the previous work. In addition, the PostScript page description language was

used in Phases I and II for the hardcopy output of the CSD diagrams. Because PostScript

is a nearly universal output description language for laser printers, the development of

PostScript utilities for printing GRASP/Ada object diagrams would ensure the portability of

GRASP/Ada. In this section, some of the issues and considerations involved in the

generation of visual displays for the object diagrams for the screen and printer are discussed.

Screen representations. In the XllR4 system, objects on a screen are often

represented using widgets (a user interface component embodying a single concept: e.g.,

buttons, labels, scrollbars, etc.). The development of the interface for Phases I and II of the

GRASP/Ada research project was implemented using the X11R4 Athena widgets, a general

purpose widget set shipped with the X11R4 system. Numerous utilities were developed by

the GRASP/Aria implementation team to simplify the use of these widgets to providing

facilities for browsing files, generating alert boxes and dialogues, creating text editor

windows, and specifying menus. These utilities would be invaluable in the development of

the ODgen interface, but additional utilities will be needed. In particular, there are no

suitable widgets in the Athena set for displaying the various OOSD symbols. A reasonable

approach to implementing a display mechanism for the ODgen diagrams would involve the

creation of a set of widgets, one for each of the symbols in the OOSD set. These widgets
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could besubclassedfrom existingwidgetsin the X11R4Athenaset,minimizing theamount

of effort required to create them (althoughthis would causethem to needrevision with

subsequentreleasesof X11). And oncewritten, thesewidgetscould beusedin otherCASE

programswritten for X11R4. Next,constraintandlayout widgetswould needto bedesigned

to facilitate the layout of theseOOSDsymbols. Again, a suitablewidget could becreated

by subclassinganappropriateAthenawidget,in this case,probably theForm widget. Such

a widget would beresponsiblefor laying out anarchitecturaldiagramandredrawingit after

modifications,thusjustifying the needfor embeddedlogic to be written for the automatic

layout of the ODgendiagrams.

Printer Representations. In PhasesI and 17 of the GRASP/Aria research project,

three different types of output devices were utilized. The first was the LN03 printer, a printer

manufactured by DEC with the capability of printing sixel graphics. Printing the CSD on the

LN03 printer was accomplished by generating sixel representations for each of the CSD

characters and then printing each CSD character as a small graphic image. The text of the

Ada source program was printed normally using the LN03 resident fonts. This method had

several major disadvantages: it was not portable (sixel graphics are a proprietary format of

DEC), it was slow (printing each CSD character as a graphic bitmap was a time-consuming

process), it was crude (the sixel graphics format did not allow for a high degree of resolution

and the generated CSD characters suffered from jagged outlines), and it wasted file space (the

space required to store the sixel representation of a single CSD character was equivalent to

the space needed to store over 200 text characters). The second output device utilized was

the HP LaserJet I/printer, an extremely popular laser printer. Using the LaserJet II enabled

the GRASP/Aria program to utilize a specially prepared CSD font that could be downloaded

to the printer. This method allowed the CSD to enjoy greatly improved resolution over the
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LN03 characters,a muchsmallerfderepresentation(sinceeachCSDcharactercouldnow be

representedasa singleextendedASCII characterratherthanalargebitmapimage),andfaster

printing speeds.However, thismethodwasstill tied to a singlecommercialprinter, theHP

LaserJetII. Thethird methodallowedtheGRASP/Adaprogramto generateCSDsthat could

be printed on a wide variety of printers by generatingCSDs using the PostScriptpage

description language. PostScript representationsfor each of the CSD characterswere

generatedusing a seriesof PostScriptgraphic primitives to describehow to draw each

character.Oncedesigned,thesecharactersweremergedwith aPostScriptprogramthat uses

the Adobe Courierfont to producea modified Courierfont containingthe CSDcharacters.

The CSD font can be installed on any PostScriptprinter by downloading this PostScript

program. Thereafter,CSDscanbeprintedby sendingthemto theprinter andspecifyingthis

speciallymodified Courierfont. The advantagesto this methodaremany: the CSDcanbe

printed on anyprinter (laser,inkjet, dot-matrix,etc.) that supportsPostScript;the CSDcan

be printed at the highestresolution the printer is capableof producing, which generally

producesresultsof outstandinghigh quality on mostlaserprinters;and theCSDfont canbe

scaledto any size,allowing the CSD to be printed at any size the userwishes(unlike the

previousmethods,which allowedthe userto haveonly onefont size). For PhaseIIl of the

GRASP/Adaresearchproject,a library of PostScriptroutinesfor printing eachof the OOSD

symbolsmust be created. The ODgenprogramcan then invoke theseroutinesto createa

sequenceof descriptionsfor printing theOOSDdiagramto anyPostScriptprinter. Caremust

beexercisedin thecreationof theseroutinesto ensurethattheymatchthe appearanceof the

X11R4 widgets also correspondingto theseOOSD symbols. Like the modified X11R4

widgetsfor the OOSDsymbols,thesePostScriptroutinesshouldalsobeportableto anyother

CASE tool for the X11R4 system.
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4.4 Incremental Changes to the OD

The ultimate goal of the ODgen phase of the GRASP/Ada research project is to allow

the user to reverse engineer a set of Ada source files into an architectural diagram. For a

large system, this may take some time. It would be desirable to have the user do the reverse

engineering once and then have ODgen incrementally change the OD as the user makes

changes to the source code. However, this is an extremely complex issue, and some of the

problems involved in doing this are addressed in this section.

The first problem involved in the incremental updating of the OD is that if the

DIANA notation is used to obtain the syntactic and semantic information from the Ada

source files for the generation of the OD, then we are immediately stymied. In its current

states, DIANA does not support incremental updates. If a portion of a file is changed, then

the entire file must be recompiled to update the DIANA net. Thus, any implementation of

ODgen which relies on a DIANA net for its information could not support incremental

diagram updating. A parser specifically modified for incremental updates could prove useful

in generating the diagrams, but such parsers are extremely complex to design and are often

excruciatingly slow in practice. Teitelbaum and others [TEI81] have outlined some of the

problems involved in incremental parsing in their work on the development of syntax-directed

editors.

The second problem involved in the incremental updating of the OD lies in the

unrestrained freedom of editing by the user. The proper generation of an OD relies on the

existence of a relatively complete Ada compilation unit, where "relatively complete" is

defined as a main (or "driver ") program along with at least the specifications of the

packages, tasks, and modules upon which it depends. The existence of a relatively complete

program is not normally a problem in reverse engineering, where the user has a system and
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is just trying to decipherits function andmeaning. However, the usercould initiate what,

to him, appear to be very minor changes that could lead to many changes throughout the ODs

and CSDs. As an example, imagine that the user renames a small package. To him, this

may be a minor modification, but it would create havoc for the ODgen system. The system

would no longer be relatively complete, as it would now contain what would appear to be a

new and unreferenced package along with a large number of package inclusions that may no

longer be satisfied. This and related problems must be addressed in any attempt at providing

incremental updates to the ODs and CSDs.

4.5 Internal Representation of the OD - Alternatives

Although the DIANA intermediate representation for Ada may be used to gather

information for the creation of the OD, and the StP/ADE format may be used as one possible

output representation for the OD, a more extensive and comprehensive internal representation

tailored for the needs of the OD generator is desired. Several alternatives are presently under

consideration for this internal representation of the OD. These alternatives include (1) storing

the OD as a single ASCII file, (2) storing the OD as a number of files tailored to the internal

data structures utilized by ODgen, and (3) completely bypassing the internal representation

to directly generate the OD from a DIANA net. Each of these approaches has its own merits

with respect to processing and storage efficiency, and these qualities are in this section.

Single ASCII File. The most direct approach is to utilize the StP file format. This

would present the option of viewing the OD via the StP/ADE system. However, although

the StP f'fle format is "open architecture," it is a proprietary format and is, therefore, subject

to change. Because the function of the ODgen system will be dependent to a high degree on

the organization of the data upon which it operates, a stable data format is desired.
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Therefore,an original data format might prove to be more useful over time as it would reduce

the problems of compatibility with commercial formats (filters could be written to translate

from the ODgen format to other formats). In addition, commercial formats such as the StP

format might lack provision for all of the information which might be needed for the OD.

This is particularly true for the case in which the user may wish to link CSDs generated using

the GRASP/Ada CSD generator to objects in the OD. A comprehensive internal

representation consisting of segments storing information for each of the OOSD symbols may

prove to be necessary to fulfill all of the needs of Phase III of the GRASP/Ada research

project.

Multiple ASCII Files. Because a typical Ada program will involve a number of

source files, an alternative to storing the data relating to a system in a single file is to store

the data in a number of files, each linked to one or a number of source files. Such a system

would decompose the intermediate representation into a number of smaller units. With an

appropriate indexing scheme, this could bring about increased performance in the ODgen

program as the system would not have to peruse unnecessary information to get to the data

it needs. This scheme might also prove helpful in producing incremental changes to the OD.

The major drawbacks to this method are the greatly increased number of files generated and

the overhead involved in the indexing scheme.

Direct Generation From DIANA Net. If tight coupling and integration with a

commercial Ada development system such as Verdix VADS is desired, then direct generation

of the OD from the DIANA net produced as a result of compilation could be performed.

This would require a layer of software which traverses the DIANA net and calls the

appropriate OD primitives as unit nodes are encountered. This approach would apparently
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eliminate the possibility of directly editing the OD since the DIANA interface doesnot

supportmodifying the net, only readingit.

4.6 Navigation Through Large ODs - Alternatives

Because many Ada software systems are fairly large in size and scope, some facility

for easily navigating the ODs generated for them must be provided. There are three

navigational methods presently being considered for use in the ODgen system. These include

(1) the creation of a "table of contents" for the system, (2) the direct navigation throughout

the system using a "point and click" interface similar to that provided in hypertext or in the

HyperCard application on the Apple Macintosh, and (3) a combination of these two methods.

In this section, these methods are described and the relative advantages and disadvantages

pertaining to each method are presented.

Index (or Table of Contents). An index, similar to that presented in the Xman

application provided with the X Window System, would be used to navigate among a system

of CSDs and ODs. After generating the CSDs and ODs, the user would be presented with

an ordered list of the diagrams. To view a diagram, the user would click on the index entry

and the corresponding CSD or OD would be displayed. The index entries would be created

as the respective diagrams are generated and stored in the GRASP/Aria library (see Section

6 below). The greatest advantage to this method is that the user may see the entire range of

diagrams at once - nothing is hidden. However, for a nontrivial system this may be a list of

daunting proportions requiring the user to have some familiarity with the system to be of any

use. This disadvantage may be offset by layering the index so that only top level diagrams

are presented at f'n'st, each containing links to a sublist of associated diagrams, etc. In
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addition,iconsor informativelabelscouldbeattachedto eachindexentry to provide theuser

with additionalinformationregardingthediagramunderconsideration.

Direct Navigation Via ODs. With this method, after generating the CSDs and ODs

for an Ada system, the user would be presented with the top level diagram for the system.

The user could reach other diagrams in the system by clicking on the OOSD symbols in the

top level diagram: this would bring up the associated subdiagram or CSD on the screen. The

user is allowed to click on procedure, function, and task entry calls in the OD directly and

a separate OD window is opened containing the selected OD or fragment thereof (there may

be a problem using/implementing this approach since the mouse is also used for editing).

Browsing the OD in this manner would be much like working with hypertext, and would

provide some of the advantages and disadvantages associated with hypertext. For example,

the user may gain an incomplete view of the system by following odd threads throughout it.

The user may also have to sift through a great deal of high level detail to get to low level

components. This might prove frustrating in practice. However, the user would have the

freedom of navigating throughout the system in an logical manner.

Combination of Index and Direct Navigation. The two approaches discussed above

both have their relative merits and problems. A more desirable solution to the navigation of

large ODs possibly lies in the combination of these methods. By providing a linked series

of ODs and CSDs with a comprehensive listing of all diagrams, the user would have

unresu-ained freedom in navigating throughout the system. Additional utility could be

provided by allowing the user to "mark" viewed and unviewed diagrams in the index, and by

maintaining a list of recently visited diagrams. However, this approach would be more

difficult to implement and would take careful analysis and design to be effective.
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4.7 Expiodinglhnpioding the OD

The OD window should provide the user with the capability to explode or implode

the OD based on Ada constructs and complete diagram entities (e.g., procedures, functions,

tasks and packages). This capability directly combines the ideas of chunking with the major

threads of control flow which are major aids to comprehension of software. The OD can be

supplemented by architectural CSD (ArchCSD) [DAV90], a diagram produced by collapsing

the CSD based on procedure, function, and task entry calls, and the control constructs that

directly affect these calls.

4.8 Generating a Set of ODs

Since GRASP/Ada is to be used to process and analyze large existing Ada software

systems consisting of perhaps hundreds of files, an option to generate all the CSDs at once

is required. Generating a set of ODs should be facilitated by entering a wildcard file name

(e.g., *.a). An OD generation summary window should display the progress of the

generation by listing each t-fie as it is being processed and any resulting error messages. The

summary should conclude with number of files processed and the number of errors

encountered. The default for each OD file name is the source file name with .od appended.

Generating a set of ODs can also be considered a user interface requirement rather than

strictly a OD generator requirement.

4.9 Printing An Entire Set of ODs

Printing an entire set of ODs in an organized and efficient manner is an important

capability when considering the typically large size of Ada software systems. A book format

is under consideration which would include a table of contents and/or index. In the event
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GRASP/Adais integratedwith IDE/StP/ADE,the StPDocumentPreparationSystemcould

possiblybe utilized for this function.

4.10 Relating the CSD and OD - Alternatives

For each OD in the system under scrutiny, the user will have the ability to click the

mouse on any OOSD symbol in the diagram and be presented with the underlying CSD or

a subsequent level of OD, if it exists. In addition, a button will be provided on each OD or

CSD window allowing the user to step back up one level in the diagram hierarchy to see the

"parent" diagram. In this manner, the user will be able to fully traverse the ODs and CSDs

comprising the system using a "point and click" approach. In addition, the user may choose

to bypass the hierarchical traversal by simply choosing the diagram to be viewed from the

index list of diagrams.

Each CSD corresponds to an object symbol (e.g., procedure, function, package, task,

task entry). These may be nested and may each have an interface and a body. Conceptually,

the CSD may be collapsed to a graphic symbol. A group or system of these symbols could

be interconnected (logical inclusion and/or invocation) to form an object diagram. This could

be thought of as "growing" or synthesizing the system diagram. The user would be able to

open any of these symbols to see the lower level diagram associated with it.

If the StP/ADE system is to be used for viewing the ODs and CSDs, the ODs could

be viewed directly. The CSD could be displayed as an annotation in StP/ADE. This would

require that the CSD font be downloaded into the appropriate StP/ADE window for the

diagram to be viewed properly.
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4.11 Index and Table of Contents Relating the CSDs and ODs

An index of all CSDs and ODs should be available via the GRASP library. The index

should be presented in a window to the user, and upon the selection of an index entry, an

appropriate CSD window should be opened. The index will provide an additional means of

navigation among diagrams in an interactive mode, and it will be the basis for printing a

complete set of all diagrams. See the section below entitled, "The GRASP Library" for more

information.
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5.0 User Interface

GRASP/Ada user interface was developed using the X Window System, Version 11

Release 4 (XllR4). The X Window System, or simply X, meets the GRASP/Ada user

interface requirements of an industry-standard window based environment which supports

portable graphical user interfaces for application software. Some of the key features which

make X attractive for this application are its availability on a wide variety of platforms,

unique device independent architecture, adaptability to various user interface styles, support

from a consortium of major hardware and software vendors, and low acquisition cost. With

its unique device independent architecture, X allows programs to display windows on any

hardware that supports the X Protocol. X does not define any particular user interface style

or policy, but provides mechanisms to support many various interface styles.

The Version 2 prototype user interface provided windows for source code text editing

and windows for Control Structure Diagrams (CSDs) viewing in a limited fashion. The

Version 3 prototype user interface, which is a significant extension of Version 2, allows the

user to open one or more source windows to read or edit source code in the usual way. The

user may open one or more CSD windows, indicate corresponding source files and CSD files,

and then generate the CSD from each of the indicated source files. If the CSD was generated

previously, the source file is not required by the CSD window. In either case, the CSD

window allows the user to scroll through the CSD. Other options in include Print CSD, Save,

etc.

The Version 3 prototype user interface, being developed during Phase 3, represents

a significant enhancement of the Version 2 prototype user interface. Much of the
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enhancementis relatedto thedevelopmentof the intermediaterepresentationof theCSDand

the more intuitive generationandmanipulationof the CSD. The specificationsandfigures

thatfollow areintendedto definethelook andfeelof theGRASP/AdaUser Interfaceaswell

as indicatemuchof its currentandfuture functionality. The Ada sourcecodeusedin the

figures wasextractedfrom the AERO.DAP.PACKAGEprovidedby NASA to testthe CSD

generator. CompleteCSDsfor the files processedare includedin Appendix C.

5.1 System Window

The System window, shown in Figure 6, provides the user with the overall

organization and structure of the GRASP/Ada tool. Option buttons include: General, Source

Code, and Control Structure Diagram. These are briefly described below. A future button

is planned for Object Diagram.

General - This option provides access to the environment including loading of fonts

for X and selection of printers.

Source Code - This option allows the user to open one or more windows for viewing

and editing source code.

Control Structure Diagram - This option allows the user to open one or more

windows for viewing CSDs.

5.2 Source Code Window

The Source Code window, shown in Figure 7, provides the user with the general

capabilities of a text editor. It is included in the GRASP/Ada system for completeness since

the system uses source code as its initial input. The user may elect to use any suitable editor

callable from the X environment. A future version of GRASP/Ada will allow the user to edit
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Figure 6. GRASP/Aria System Window
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the CSD directly, making a pure text editor redundant.

The source file and its associated directory path are entered and displayed at the top

of each window. See the Control Structure Diagram Window below for details on the menu

options.

5.3 Control Structure Diagram Window

The Control Structure Diagram window, shown in Figure 8, provides the user with

capabilities for generating and viewing a CSD for an Ada source file. Multiple CSD

windows may be opened to access several CSD files at once. The source file and the CSD

file names and their associated directory paths are entered and displayed at the top of each

window. When the CSD window is opened initially, the source file with a .csd extension is

displayed as the default. In the current version of GRASP/Ada, generation of the CSD is

done on a file-leve/ basis where each file contains one or more units. When changes are

made to the source code, the entire CSD for the file involved must be regenerated. Future

versions of GRASP/Ada will address incremental regeneration of the CSD in conjunction with

editing capabilities in the CSD window. The CSD window options are described below.

File - This option allows the user to select from numerous options including:

Load - This option loads a CSD file. A window is presented to the user that

allows the user to select a file from current directory (see Figure 9).

Save - This option saves the CSD file with the same name as was loaded.

Save as ... - This option saves the CSD file with a new name.

Print - A window is presented which allows the user to select various print

options such as point size, page numbers, and header.
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Open Source - This option opens a source window with the source file that

corresponds to the current CSD file. The purpose of this option is to facilitate

editing of the source file in the absence of CSD editing capabilities in the

CSD window.

Quit - The CSD window is closed.

View' - This option allows the user to select from options including: Enable Collapse

{Disable Collapse}, Suppress CSD {Show CSD}, Open TOC window, and Open

Index window (Colors will be a future option).

Enable Collapse {Disable Collapse} - This option allows the user to collapse

the CSD based on its control constructs.

Suppress CSD {Show CSD} - This option allows the user to suppress or hide

the CSD giving the appearance of prettyprinted code.

Open TOC Window' - This option accesses the GRASP librar 3' and displays

a table of contents based on Ada scoping.

Open Index Window' - This option accesses the GRASP library and displays

an index of units in alphabetical order.

Edit - This option allows the user to modify the CSD and the associated source code.

Currently, this is a proposed future option which may become an integral function of

the CSD window.

Find - This option allows the user to perform search and replace operations.

Currently, this is a proposed future option which may become an integral function of

the CSD window when editing capabilities are added.
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Generate - This option allows the user to generate the CSD from the indicated source

file. Options include whether to generate with Table of Contents, with an Index, and

also Format options.

Generate CSD - generates the CSD from the source file entered at the top of

the CSD window; saves the CSD in the CSD file entered at the top of the

CSD window, and loads the CSD into the window.

.. with TOC - also generate a table of contents for the CSD.

.. with Index - also generate an index for the CSD.

.. with TOC/Index - also generate both TOC and index.

Format ... - This option allows the user to set horizontal and vertical spacing

such as margins, line spacing, and indentation of CSD constructs as well as

highlighting keywords by underlining, boldface, italics, or upper/lower case.

This option may also include items such as page numbers, headers, and

footers. Many of these formatting options are expected to be available via the

View option above.
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6.0 The GRASP Library

The GRASP library provides the overall organization of the generated diagrams. The

file organization should use standard UNIX directory conventions as well as default naming

conventions. For example, all Ada source files should end in .a or .ada and the

corresponding CSD f'des should end in .a.csd. For each procedure, function, package, task,

task entry, and label, a GRASP library entry is generated. The library entry should contain

the following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the line number.

CSD file (file name, line number)

OD file (file name)

"Referenced by" list

"References to" list

Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is

updated on subsequent CSD generations.

(2) During the processing of DIANA nets.
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Alternatives for implementing the GRASP library include (1) developing an Aria

packageor equivalentC modulewhich is calledby theCSD generationroutinesduring the

parseof the Ada source,(2) using the VADS library systemalongwith DIANA, and (3)

usingthe StP TROLL/USE relational database system. Of these alternatives, the first one

may be the most direct approach since it would be the easiest to control. The VADS and StP

library approaches may be more useful with the addition of object diagram generation and

also with future integration of GRASP with commercial CASE tools.
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7.0 Future Requirements

The GRASP/Ada project has provided a strong foundation for the automatic generation

of graphical representations from existing Ada software. To move these results in the

direction of visualizations to facilitate the processes of V & V, numerous additional

capabilities must be explored and developed. The proposed follow-on research is described

by tasks partitioned into three phases. A small team is expected to work on each phase for

a period of up to one year. Operational prototypes will be demonstrated at the end of each

phase.

7.1 Phase 1 - Generators and Editors for Visualizations

Phase 1 consists of five subtasks. The first is to formulate a set of graphical

representations that directly support V & V of Ada software at the algorithmic,

architectural and system levels of abstraction. This task will include an on-going

investigation of visualizations reported in the literature as currently in use or in the

experimental stages of research and development In particular, specific applications of

visualizations to support V & V procedures will be investigated and classified. A small, but

representative, Ada program will be utilized to formulate and evaluate a set of graphical

representations, and the feasibility of reverse engineering the diagrams from Ada PDL and

source code will be evaluated. These graphical representations are expected to undergo

continual refinement as the automated tools that support them are developed.

The second subtask of Phase 1 is to design and implement a prototype software

tool to generate visualizations from various levels of Ada PDL to support V & V during
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detailed design. The previous efforts of the GRASP/Ada project have focused on the

generation of graphical representations from syntactically correct Ada source code. Since

most detailed design is done in an Ada PDL which is less rigorous than Ada, the capability

to generate visualizations directly from PDL is required to facilitate verification during the

detailed design phase of the life cycle. The diagrams generated in Phase 1 are expected to

focus on the algorithmic level of representation.

The third subtask of Phase 1 is to design and implement a prototype software tool

to generate visualizations from software written in C. Since much of NASA's production

software is currently being written in a combination of C and Ada, the capability to generate

visualizations from C source code is required to support visual verification of the integrated

software system. And since C is intrinsically less readable than Ada, maintenance personnel

may greatly benefit from algorithmic-level diagrams generated from C source code.

The fourth subtask of Phase 1 is to design and implement a prototype graphically-

oriented editor which provides capabilities for dynamic reconstruction of the diagrams

generated in the tools described above. This capability will directly support visual

verification at its most primitive and important levels, as PDL or source code is entered or

modified. In this mode, the graphical representation can provide immediate visual feedback

to the user in an incremental fashion as individual structural and control constructs are

completed. The present GRASP/Ada prototype generates the graphical representation only

after a complete compilation unit of source code has been entered correctly.

Finally, the fifth subtask of Phase 1 is to design and implement a user interface

capable of supporting a state-of-art multi-windowing paradigm. The user interface for

the tools developed in this research project will be built using the X Window System. This

should facilitate eventual integration of the tools into any Ada programming support
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environment(APSE) which runsundera similar window manager. In addition, this multi-

windowing paradigmwill allow thetoolsetto takefull advantageof the currentcapabilities

of powerful workstationhardware.

7.2 Phase 2 - Evaluation and Extension

Phase 2 consists of five subtasks. The fin'st is to continue the tasks defined in Phase

1 with respect to refinement of the V & V process, implementation of the prototype

tools, and intertool communication. The results of the investigation in Phase 1 will be used

to refine the V & V process and the visualizations which support the process. The individual

tools prototyped in Phase 1 will be integrated through a window manager for the X Window

System. The user interface and a persistent storage mechanism such as DIANA will provide

the basis for intertool communication.

The second subtask of Phase 2 is to evaluate the individual tools developed in

Phase 1. Representative sets of programs written in PDL, Ada and C will be utilized to

evaluate the set of graphical representations generated by the prototype. These graphical

representations and the automated tools that support them are expected to undergo continual

refinement during Phase 2.

The third subtask of Phase 2 is to design and implement a prototype software tool

for generating architectural diagrams (ADs) from Aria PDL and a combination of Ada

and C source code, to support the process of V & V. The Phase 1 prototype, which

focused on the generation of an algorithmic notation, will be extended to include architectural

diagrams. This task will include (1) development of procedures for identifying and recording

module interconnections, (2) development of algorithms for architectural diagram layout, and

(3) development of methods for displaying/printing architectural diagrams on hardware

5O



available for this research. The tool will be usedon representativeAria software. The

generatedsetof graphicalrepresentationswill beevaluatedfor completeness,correctness,and

generalutility asan approachto reverseengineering.

Thefourth subtaskof Phase2 is to investigatethe potential for integration of the

toolset with currently available commercial systems. Commercial CASE systems and

APSEs will be surveyed to determine appropriate commercial systems to target for

integration. Many vendors are currently developing "open architecture" systems to facilitate

the integration of third party tools.

The fifth subtask of Phase 2 is to investigate the use of visualization tools to

support software testing, particularly unit level branch coverage analysis. Software

testing is an important and essential component of V & V. Visualization tools are extremely

useful for analyzing and reporting branch coverage. In addition, they may be very useful for

graphically selecting a path for which data items to drive the path should be generated. This

task would be done in conjunction with QUEST/Ada, a related project which has focused on

the theoretical issues of test data generation [BRO90].

7.3 Phase 3 - Evaluation and Integration with Commercial Systems

Phase 3 has three subtasks. The first is to complete the tasks defined in Phases 1

and 2 with respect to refinement, intertool communication, and integration of an

operational prototype. In particular, the user interface will be completed as a basis for

overall integration of the prototype tools.

The second subtask of Phase 3 is to evaluate the tooiset developed in Phases 1 and

2. Software systems which are representative of three levels of size and complexity, will be

utilized to evaluate the set of graphical representations generated by the prototype as well as
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theprototypeitself. Thesesystemswill be written in Ada/PDL,Ada, C, or a combination

of Ada and C. The graphicalrepresentationsgeneratedandthe prototype areexpectedto

undergocontinualrefinementasa result of the evaluation.

The third and f'mal subtaskof Phase3 is to integrate with currently available

commercial systems those components of the prototype toolset which show the most

promise for improving V & V. The results of the survey of commercial CASE systems and

APSEs conducted in Phase 2 and the ongoing evaluation of the prototype tools will be used

to determine appropriate commercial systems to target for integration.
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Reverse Engineering
and Design Recovery:

A Taxonomy

Elliot J. Chikof RJ_, Index Teo_nolo_y Corp. and Northeastern Unnc_rsity
James tL Cro_ II, Auburn Unive_y

Reverse engineering is

evolving as a major
link in the software

life cycle, but its

growth is hampered

by confusion

over terminology.
This article defines

key terms.

January 1990

he av'_Lability of computer-aided s)_

toms-engineering environmcnu l_s
redefined how many organizations

approach _cm development. To meet

their true potential, CASE cnvironmenu

are being applied to the problems of

maintaining and enhancing existing sys-

tems. Ti_e key lies in applying re'verse-en-

gineering approaches to soft_lre systems.

l-iowcvcr, an impediment to success is the
considerable confusion over the termino-

log)' used in both tcchnicad and market-

place discussions.

It is in the reverse.engineering arena,
where the software maintenance and de-

velopment communities meet. that x_ri-

ous terms for technologies to analyze and

understand existing systems have been

frcquendy misused or applied in connict-

ing ways.

In this article, we define and relate six

terms: forward engineering, reverseengi-

neering, rcdocumentation, design reco_

_ECED_NG PAGE
0"/40-7459/90_I(X_OI3/S01,00¢ 1990IEEE

cry, restructuring, and rcelJginec-rmg

Our ob_ccdvc is not to create .c-w tern,_
but to rationalize the terms _dready in u_.

The resulting definitions apply to the un-

derlying engineering proce,_cs,regard-

lessof thedcgTee of automation applied.

Hardware origins
The term "reverse engineering" ha-_ its

origin in the analysis of hardware

where the practiceofdeciphering desig.s

from finished Produc_ is commonplare.

Reverse engineering is regularly applicd

to improve your own products, as well as

to analyze a competitor's products or

those of an adversary in a military or ,ra-

tional-security situation.

In a landmark paper on the topic. M.C.

Rekoff defines reverse engineering as

"theprocessof developing a setof specifi-

cationsfor a complex hard'aaxe system _,

an orderly examination of specimens oF

that s_stem."_Hc describes such a process
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Requirements
_constmJnts,..-.,- ,
-.objectives,_:_-L_ : "

" businessrules) ":_:_:- ."

-engmeenng

......... [_' enomeenng -
.... V Design

Design

Forw'ard

............ engineering_

•Reverse

•,. engineering

_:_ Design
............. recovery

ReenQineering
(renovation)

Restructuring Restructuring

Implementation

iiiiiiiiiiii 

Redocumentation,
restructuring

F_-'ute 1. Relationship between terms. Reverse engineering and related processes are

transformations between or within abstraction levels, represented here in terms of lite-

cycle phases.

as being conducted by someone other

than the developer,"without the benefit

of any of the originaldrawings _. for the

purpose of making a clone of the original

hardware system...."

In applying these concepts to software

systems, we find that many of these ap-

proaches apply to gaining a basic un-

derstanding of a system and its structure.

However, while the hardware objective

traditionally is to duplicate the system, the

software objective is most often to gain a

sufficient design-level understanding to

aid maintenance, strengthen enhance-

ment, or support replacement.

,  'twam maintenance
The ANSI definition of software mainte-

nance is the "modification of a software

product after delivery to correct faults, to

improve performance or other attributes,

or to adapt the product to a changed envi-

ronment," according to ANSI/IEEE Std

729-1983.

Usually, the system's maintainers were

not its designers, so they must expend

many resources to examine and learn

about the system. Reverse-engineering

tools can facilitate this practice. In this

context, reverse engineering is the part of

the maintenance process that helps you

understand the system so you can make

appropriate changes. Restructuring and

reverse engineering also fall within the

global definition of software mainte-

nance. However, each of these three pro-

cesses also has a place within the contexts

of building new systems and evolutionary

development.

Life cycles and
abstractions

To adequately describe the nodon of

software forward and reverse engineer-

ing, we must first clarify three dependent

concepts: the existence of a life-,cycle

model, the presence of a subject s3stem,

and the identification of abstraction lex-

els.

We assume that an orderly life-cycle

model exists for the software-develop-

ment process. The model may be repre-

sented as the traditional waterfall, as a spi-

ral, or in some other form that generally

can be represented as a directed graph.

While we expect there to be iteration

within stages of the life cycle, and perhaps

even recursion, its general directed-graph

nature lets us sensibly define forward

(downward) and backward (upward) ac-
tivities.

The subject system may be a single pro-

gram or code fragment, or it may be a

complex set of interacting programs.job-

control instructions, signal interfaces,

and data files. In for_rard engineering, the

subject system is the result of the develop-

ment process. It may not yet exist, or its

existing components may not yet be uni-

ted to form a system. In reverse engineer-

ing, the subject system is generally the

starting point of the exercise.

In a life-cycle model, the early stages

deal with more general, implementation-

independent concepts; later stages em-

phasize implementation details. The

transition of increasing detail through the

forward progress of the life cycle maps

well to the concept of abstraction levels.

Earlier stages of _'stems planning and re-

quirements definition involve expressing

higher level abstractions of the system

being designed when compared to the im-

plementation itself.
These abstractions are more c]oseh re-

Ltted to the business rules of the enter-

prise. They are often expressed in ttset

terminolog 3' that has a oneqc,-mml)' rela-

tionship to specific features of the fil_-

ished svstem. In file same sense, a I)ll=e-

print is a higher level abstraction of ti_e

building it represents, and it may docu-

ment onh' one of the mm W models (elec-

trical, _'ater. hc,lting/ventJl;ltion/air con-

ditioning, and egress) that must corn<'

together.

it is important to distinguislx between

/t_Lsof abstraction, a concept that crosses

conceptual stages of design, and degree_ of

abstraction _4thin a single stage. Span-

ning life-cycle phases ire'elves atr, utsition

from higher abstraction levels in early

stages to lower abstraction lcvels in later

stages. _qdle you can represent informa-

tion in any life-cycle stage in deufiled form

(lower degree of abstraction) or in more

summarized or global forms (higher tie-

gree of abstraction), these definitions em-

phasize tiae concept of/eueL_ of ahstracti(m

between life-cycle pha._s

Definitions
For simplicity', we describe key terms

using only three identified lift-cycle stages

with clearly different abstraction levels, a_

Figure 1 shows:

• requiremcnts (specification of the

problem being solved, incht(ling objec-

tives, constraints, and business rules),

• design (specification of the solution),

and

• implementation (coding, testing, aml

delivery of the operational system).

Forward engineering. Forward engi-

neering is the traditional process of mov-

ing from high-level abstractions mid logi-

cal, implementation-independent

designs to the physical implementation of

a system.

While it may seem unnecessary _ in

view of the long-standing use of design

and development terminology _ to intro-

duce a new term, the adjective "forward"
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has come to be used where it is necessary

to distinguish this process from reverse

engineering. Forward engineering if)l-

lows a sequence of going from require-

ments through designing its maplcnlenta-

tion.

Reverse engineering. Rcver_- engiuecr-

ins is tile process of anal.vzmg a sub|eel

s%%1.e111[()

• |dentil\' tilt' system's components ;ill+!

their interrelat ionsifips mid

• C t1C_ [( ' IIL'pl ('N('llt"l'li()t]S (If" th(" S_t'S|l.'lll ill

another Ibrna _n ;it :t ifighcl level ,_t ab-

stlaction.

Reverse cngmccring 14enenllly mvolvcs

extx';icting de'sign artil;icts anti building oi

s}'lltllesizilig alr,;tl_lcti()ns that ;ire less iln-

plenlelmltion-dcl)endent. While reverse

engineerl,lg often involves an existing

functional system as its subject, dlis is )_ a

requirement. _m call [R'r["Orlll red'%,e'[.',_ ell =

gineering starting from any level of ah-

stmlction or at any stage tlf die li[_ cycle.

Reverse engineering in and of it, tel/

does I'ml inwflvc changing die sullject s3.s-

[Cllli.)l ci-c_lJllg ;i ii_'%,_,' svMclll [):l.scd (ill Ih('

rcver._'-engincercd su|_ject s),stcni. Jl is ;t

pr(_zc_s of examinatzon, not a puocexs tif

ch_ulge or replicati(m.

In sp;uming the li[c_'vclc slages, rtwct _"

t'llgille(.'11111. _ t (!+v(-i >,;I lltlmd r;tll_(' nt.+irtill_

II tllil thc existing imlflCmCUUili<nl, recap-

turing or recreating the design, and

decipheri,lg the lequilenlents actually

itnplenlenltcd by the sut_ect system.

"Fhcre ;ire lil_llly +',;ll|);irCki._, (1_"rt"V('l+_" Cll-

gineering. Two st,liareas dlat aJc v:id<:ly

rc[(.'rrcd to art., r('(l(i('tLtllt'llt;ttJ(lll ;tlld (it'-

sign rc'('ovel y.

[_thK'itnl,¢tllttlirm. Rcd()c'ulliCllt;lli(m in

the (rcation or revision o[ a S('lll;llllR;ll[V

equivalent representation within the

same relative al_stracti<m h:vc[. The rcsuh-

lug [ilrnis (d repicscntati<m arc usultlly

collsidered altcrllalC vit-ws ([()r eXallipk',

dauaflow, data slrtl(illrt', alid ColiLr(l[ fh_w)

illt_llded for a hunlan audielice.

Reclocuillelll_ttion is the simplest and

oldest form of reverse elig{llt, erhig, iilid

nlailv consider it to t_' _lli I.lninlrusivt',

weak 10rrll of restructurilig. Tile "rc-" pre-

fix iniplies dial Lhe irlteilt IS tO recover dcK-

uinen_tion aboul tile+" suhjcct s%_telll IJI;it

existed or should have. existed.

danua_ 1990

Sotlle COllllilOl/ tools ur_x_'d to perform

redocumentation ,are pretty printers

(which display a code listing in bin illl-

proved form), diagi-<lm geileF-ators (which

create diagrams directh from code, re-

fiecting conu-ol flow or code structure).

and cross-reference listing genen_tors. A

key g(i;tl of the_' tools is to provide c.lsim

wm,s to visualize relationships among pro-

gl;llll C()IllpOIIL'IILS _1%'eLl C;III ICC(i_llile

and folhlw paths clearly.

lJe.wL...'tin,n)' l)csign rci'lwcr't' in ,t sill)"

M'I (it lt'ver>,( + Ull_illt'i'i'ilig in which do-

Reverse eng_neering in
and of itself does not

involve changing the
subject system. It is a

process of examination,
not change or replication.

main kn_lwledt4c, external ixif(irtnalion,

;lll([ dt'diicli(HI el [Ix//y rt!asilllilll.,_ ale

;iddcd i<l tht" <ll)_cix;ttitlns <if tilt" sulliect

svMt+lii I(i idcnli|y lilt'ltllillg[iil hil4her Icvt.I

allstraciions I_'yoild ttlo._ obtailled di-

i cctJy I)y cxaiiiiiiing ttle s),sieili it._q[.

Dcsign icctivcry is disdlil_uishcd I)), the

l)lli((-s iuid span (ll"ill[0rltililJ<lli it sh<lliid

hlilitllt'. Acciil+dilig Ill Ted lligl4crstlt[[:

"1 )CSigli rt'c( iv(-ry rc'cre;,itcs design absu'a< -

ti(lllS [l()ill ;I ((llllllililili(lll <if ('(Id('. exist-

in_ (lesion dilCllliit'lll;ititlll (if :ix:iil;ltile),

p_'i_ili;ll exp('l'i<'li('(', ;lilt[ I_t'ilt'r;l[ kli<lwl-

<'d_(" ;illicit pr(llll('lil ;tile| ;ippli('iilillll (lib

liiiiiliS .., [ )t'Sigli iecovt'ry lliUSt rcprtlducc

MI ill thc ililllrnlalJllii requili.d for a per-

_111 hi |idly lindcl_l;lUd whiil ,I pllll_raln

lilieS, h(i_' il d(i('s it, why it (hics it. _l.lld f,_t

liltlit. Thu_, it (leats with a Jar wider Fauge

()[ inforili;iti(lll than Iotind ill couven-

tiOll;t[ s<dtware-_-ngineering repre_eiil_l-

liilns ill (eric.'2

Restructuring. Rcstructnring is tile

tF, tllsli)rlllatioll |rOll) lille rcple.__-tltatioll

refill t(I another at the saint relative at_-

stcactioil level, whilc pre_;__.rvilig lilt, sub-

ject system's external betl?lviot (]tliit-

tionalirx and sen+antics)

A restl-ticltil-Iiig ll',lll.%iorll/_ttioil is o[It.li

one (if appearance, such ;is illtellllg co(it

to inlprov¢' its $truettlrt' ill the Lr;idiU(m;il

._'I1_' (fl slriicttlred desi_it Tl_e t(.rlli "1 c-

strtlCltlrhlg" calne illt() l_)puhti list, I lOill

tilt" cod¢,-l(i-codt" ti-;illstorlll diat _t't'.LM_, ;t

prowl'till1 fr()lli ;lit tlllSlrllcllircd ("spa-

gheiti") 10rill Ill ;1 sUllClUled (_tihl-l('_s)

[orlli. li(iwever, the il.-riil luc_ a ])lit;idOl

nlt.alliii_ thai it'(ll,t._lli/t's the :tppli(ati<ul

o[ sinlil;il Ii;tlISJl)lllliltJOll_ ;tlld i (.CllSllil_

tcchlliqtles ill I('shapillg dat;i illildt,ls, d('-

Si_ll piiUlS, ;tlld I'('(]tlilelilt'litS Nil Ill'till ('s+

|)ilt;i nOl'lil;ili/_;liitili, Ikli t'y;unplt', is;i (lat;i-

IO<t;tt;l lestrtlCtlirill_ li;insh_rlll It) ilU-

pllive it lol_ic;ll da!.;i it|oriel ill tilt" <|;il;ih.im"

dexign pl oct,xs.

]%tally t)_)c:i o['restructllrilig Call be" p_'l-

repined with a knowledge of structtil-al

form but withottt all tmderstandint4 of

lliCallilig, i-(Ir exmnplc, you Cllll coiiVt'll ;i

,_'i o[ If SLalc.lucnts iillo ;t (_,l_' sl ruclul c,

¢11 vice %,ersll, wilholil klltlwiilt_ Ihc

plol_i-aili's plirp_l._, lir ;lliylhilig ;ill<nil its

|)1 (ii)l('nl (|(illl;lili.

While rt-slrtltltlriii_ Cll';ilc_ ll(-_, vct-

si(lliS Ihal iliipleint-lil lit prtiptl_' ili,liil4c

I(i the suilil'¢l S_Sleln, it dllt-s it411 ul ii Iiiiilb,

iilVltlw, lll(l(|ili(;ili<liix h<.(;tlt_, ill li('%_ i i'-

(lilil('lil¢'nt_. I ll_wt'v('i, il ill,iV l(';ul ill lilt-

Ill (lll_'iValitlils t_t Ihe _ill!i¢'cl M,MI'III ileal

Sli_gest challges dlldl woukl illlpl(IVc ;4v

iwct.s of the sy_,tciii. R(-Sll-ii(llll_ll R is _II It'll

ti._d _ a 10rill o[ pre',_.'lilive llKlilil('ilali( t"

I(I inipl (iv(, the physical st;tic o[ Ihe sul_icct

systelll with respect lip _liiit' i)lClCil(-d

st;uid;ird. It ili;i),al_l hivlllv(, ;i_!iUSlilil_ lit<.

sllll.j(,tl systclli ht lii('('l lit-w ('iivil <llilll(,li-

I'_dt'llliSl FailiL_, Ih_lt dll lioL iliwllvc I t.lt __,_l-b,,,-

illeni ;ll hit4her _i]l_iF.l(lillii lcveh.

Reengineeting. Reenginccling. als.

klill_ll il._, [K)lh rell(iVati(lll inld i(-([;illl;i-

li_lii, in lit(' cxalllinati_lii iui(] ahci';lii_ln _1

il sul).jCt'l sysit'lli I(i rccllllS[lttl[e ii in ii III'_.'

[ilrlll kind the subsequent iinplelnelil_t-

tiOli o1 Lhc IleW fOrlli,

Reengmeering generally includes .%_llllC

|(Irlli (l| rt'vel._e ellgineerinl_ '(lil achi(-vc a

lliort" allstraci deseriplmn) fllllowed tlv

_lilit" |Orlli of filr_-ard enl_ilieeriii _ or rt+-

structuring. This mav include ni(_li[i(';i-

tioti.s with respect to licit' reqtiiretiletlts

not It|el bv lhe original svsteln. For eK_lll-
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Software
work

product

Parser, I
Semantic

analyzer

Information
base

composer(s) New view(s)
of product

f
• Format
• Graphics
• Documentation
• Metrics
• Logic
• Reports

F'@te 2. Model of tools architecture. Most tools for reverse engineering, restructuring,

and reengineering use the same basic architecture. The new views on the right may

themselves be software work products, which are shown on the left. (Model provided by

Robert Arnold of _e Software Productivity Consortium.)

pie, during the reengineering ofinforma-

uon-management systems, an organiza-

tion generally reassesses how the system

implements high-level business rules and

makes modifications to conform to

changes in the business for the future.

There is some confusion of terms, par-

dcuiarly between reengineering _uld re-

structuring. The IBM user group Guide,

for example, defines "application reen-

gineering" as =the process of modifying

the internal mechanisms of a system or

program or the data structures of a system
without changing the functionality (sys-

tem capabilities as perceived by the user).

In other words, it is altering the how

without affecting the what. "J This is closest

to our definition of restructuring. How-

DesignIssues

Alternatives
rejected

Ramilcalions
of decisions

Existing
design

Code

Unplanned
ramifications
(sideeffects)

Reverse
engineering

Figure 3. Differences between

viewpoints. Although reverse engineenng

can help capture lost information, some
types of intorrnation are not shared be-

tween iorward- and reverse-engineering

processes. However, reverse engineenng
can provide observations that are un-

obtainable in forward engineehng.

ever, two paragraphs later, the same publi-

cation sa_, "It is rare that an application is

reengineered without additional

functionality, being added.'This supports

our more general definition of reengin-

eering.

_rhile reengineering im'oh'es hod1 fo,-

ward engineering and reverse engineer-

ing, it is not a supertype of the two. Reen-

gineering uses the forward- and

reverse-engineering technologies avail-

able, but to date it has not been the princi-

pal driver of their progress. Both tech-

nologies are evolving rapidly,

independent of their application within

reengineering.

Objectives
What are we trying to accomplish with

reverse engineering? The primary pur-

pose of reverse engineering a soft-rare _-

tern is to increase the overall comprei_en-

sibilityofthe system for both maintenance

and new development. Beyond the defini-

tions above, there are six key objectives

that will guide its direction as the techno-

log), matures:

• Cope with complexity. We must de-

velop methods to better deal with the

shear volume and complexity of systems.

A key to controlling these attributes is au-

tomated support. Reverse-engineering
methods and tools, combined with CASE

environments, will provide a way to ex-
tract relevant information so decision

makers can control the process and the

product in systems evolution. Figure 2

shows a model of the structure of most

tools for reverse engineering, reengineer-

ing, and restructuring.

• Generate alternate views. Graphical

representations have long been accepted

as comprehension aids. Howe_er, creat-

ing and maintaining them continues to be

a bottleneck in the process. Reverse-engl-

neenng tools facilitate the generation or

regeneration of graphical representa-

tions from other forms. While manx de-

signers work from a single, primary per-

spective (like dataflow diagrams),

reverse-engineering tools can generate

additional _sews from other tx'rsp__,ctives

(like control-flo_ diagrams, structure

charts, and entity-relationship diagraJns)

to aid the review and verification process.
_bu can also create alternate forms of

nongraphical representations with re-

verse-.engineering tools to form ;m i,tqx)t -

tant part of system docutne,ltatiotl.

• Recover lost inl_.)rmation. The contin-

uing evolution of large, long-lived systems

leads to lost information about the system

design. Modifications are fiequently not

reflected in documentation, particularly

ata higher level than the code itself. While

it is no substitute for preserving design

history in the first place, reverse engineer-

ing _ particularly design recovery _ is

our _ay to salvage whatever we can from

the existing systems. It lets us get a handle

on systems when we don't understand

what they do or how their individual pro-

grams interact as a system.

• Detect side effects. Both haphazard

initial design and successive modifica-

tions can lead to unintended ramifica-

tions and side effects that impede a

system's perfonnaqce in subdc v,-a)_. A.s

Figure 3 shows, reverse engineering can

provide observations beyond those_"we c_m

obtain with a forward-engineering ix, r-

spective, and it can help detect ;momalies

and problems before users report them as

bugs

• Synthesize higher abstractions. Re-

w:rsc engineering requires methods and

techniques for creating ahernatc views

that transcend to higher abstraction Icw-
els. There is debate in the software com-

munity as to how completely the process

can be automated. Cleady, expert-system

technology will playa major role in achiev-

ing the full potential of generating high-
level abstractions.

• Facilitate reuse. A significant issue in

the movement toward software reusability

is the large body of existing software a.v

sets. Reverse engineering can tlelp detect

candidates for reusable software compo-

nents from present systents.
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Economics
The cost of understanding sof_,are,

while rarely seen as a direct cost, is none-

theless very real. It is manifested in the

time required to comprehend software,

which includes the time lost to misunder-

standing. By reducing the time required

to grasp the essence of software artifacts in

each life-cycle phase, reverse engineering

may greatly reduce the overall cost of SOft-

Ware.

In commenting on this article, Wah

Scacchi of die Universi_, of Southern C.aJ-

ifornia made the following hnportant oly

-'iZ'l'V;ltiOll_ "Ululv cl,lilll thai COI)VClIIJlIIIIII

soft_,-are nlaintenallCC pt-acliccs accotJrlt

for 50' _, 90 percent of toed liR'<ycle costs.

Softy, are reverse-engineering tech-

nologies are targeted to the problems that

give rise to such a disproportionate distri-

bution of software costs. Thus, if reverse

engineering succeeds, the total system ex-

pense may be reduced�mitigated, or

greater value may Ix: added to current ef-

forts, both of which represent desirable

outcomes, especially if one quantifies the

level ofdollars spent. Reverse engineering

may need to only realize a small impact to

generate sizable savings."

Sc.acchi also pointed out that "software

forward engineering and reverse engi-

neering are not separate concerns, and

thus should be _aewed as opportunit} for

convergence and complement, as well as

an expansion of the repertoire of tools

and techniques that should be available to

the modern software engineer. 1, for one+

believe that the next generafon of soft-

ware-engineering technologies will be ap-

plicable in both the forward and reverse

directions. Such a _ew also may therefore

imply yet another channel for getting ad-

vanced software-environment/CASE

technologies into more people's hands --

sell them on reverse engineering (ba_d

on current software-mairuenance cost

patterns) as a _'ay to then introdttcc better

forward engineering tools and tech-

niques."

e have tried to provide a frame-

rk for examining reverse-en-

neering technologies by sS_-

thesizing the basic definitions of related

terms and identifying common objectives.

Reverse engineering is rapidly becom-

ing a rec%mized and important compo-

nent of future CASE environments. Be-

cause the entire life cycle is naturally an

iterative activity; reverse-engineering tools

can provide a major link in thc over:ill

process of development and mainte-

nance..as these tools mature, the_ x¢ill by

applied to artifacts in all phases of the lift'

cycle. Theywill be a permanent part of the

process, ultimateh' used to verify all com-

pleted s),'stems against their intended dr'-

signs, even with fttlh atttomatt'd gcncra-

tion.

Reverse engineering, used with evohfng

soft,care development techtmlogies, _dll

provide sigqific;mt increment,d euh;ul{ c-

inellts to otlr productivity. 4"
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Control Structure

Diagrams for Ada
James H. Cross II

Sallie V. Sheppard
Homer Carlisle

dvances in hardware, particularly high-density bit-
mapped monitors, have led to a renewed interest

in graphical representation of software. Much of the

research activity in the area of software visualization

and computer-aided software engineering (CASE)tools

has focused on architectural-level char_s and diagrams.

However, the complex nature of the control constructs

and the subsequent control flow defined by program

design languages (PDLs}, which are based on pro-

gramming languages such as Ads, Pascal, and Mod-
ula-2, make detailed design specifications attractive

candidates for graphical representation. And, since the

source code itself will be read many times during the

course of initial development, testing, and maintenance,

it too should benefit from the use of an appropriate

graphical notation.

The control structure diagram (CSD) is a notation

intended specifically for the graphical representation

of detailed designs, as well as actual source code. The

primary purpose of the CSD is to reduce the time re-

quired to comprehend software by clearly depicting
the control constructs and control flow at all relevant

levels of abstraction, whether at the design level or

within the source code itself. The CSD is a natural ex-

tension to existing architectural graphical represen-

tations such as data flow diagrams, structure charts,

and Booch diagrams.

The CSD, initially created for Pascal/PDL [ I], has been

extended significantly so that the graphical constructs

of the CSD map directly to the constructs of Ada. The

rich set of control constructs in Ads (e.g., task ren-

dezvous) and the wide acceptance orAda/PDL by the

software engineering community as a detailed design

language made Ada a natural choice for the basis of a

graphical notation. A major objective in the philosophy

that guided the development of the CSD was that the

graphical constructs supplement the code and PDL

without disrupting their familiar appearance. That is,

the CSD should appear to be a natural extension to the

Ada constructs and, similarly, the Ada source code

should appear to be a natural extension of the diagram.

This has resulted in a concise, compact graphical no-

tation that attempts to combine the best features of

previous dia_'ams with those or well-established PDLs.

A CSD generator was developed to automate the pro-

cess or producing the CSD from Ads source code.



ControlStructureDiagramforAda

Background

Graphical representations have long been recognized

as having an important impact in communicating from
the perspective of both the _writer" and the _reader."

For software, this includes communicating require-

ments between users and designers and communicat-

ing design specifications between designers and

implementors. However, there are additional areas

where the potential of graphical notations have not

been fully exploited. These include communicating the

semantics of the actual implementation represented

by the source code to personnel for the purposes of test-

ing and maintenance, each of which are major resource

sinks in the software lifecycle. In particular, Shelby et

al. [2] found that code reading was the most cost-ef-

fective method of detecting errors during the verifica-

The CSD for Ada is supported

by an operational prototype

graphical prettyprinter that

accepts Ada source code as

input and generates the CSD
in a manner similar to text-

based prettyprinters.

tion process when compared to functional and

structural testing. Standish [3] reported that program

understanding may represent as much as 90% of the

cost of maintenance. Hence, improved comprehension

efficiency resulting from the integration of graphical

notations and source code could have a significant im-

pact on the overall cost of software production.

Since the flowchart was introduced in the mid-50s, nu-

merous notations for representing algorithms have been

proposed and utilized. Several authors have published

notable books and papers that address the details of many

of these 14---6l. Tripp 151, for example, describes eighteen

distinct notations that have been introduced since 1977,

and Aoyama et al. I6] describe the popular diagrams used

in Japan. In general, these diagrams have been strongly

influenced by structured programming and thus contain

control constructs for sequence, selection, and iteration.

In addition, several contain explicit EXIT structures to

allow single entry/multiple exit control flow through a

block of code, as well as PARALLEL or eoncurrenw con-

structs. However, none of the diagrams cited explicitly
contains all of the control constructs found in Ada.
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Graphical notations for representing software at the

algorithmic level have been neglected, for the most

par_ by business and industry in the United States in

favor of nongraphical PDLs. A lack of automated sup-

port and the results ofseveral studies conducted in the

1970s that found no significant difference in the con>

prehension of algorithms represented by flowcharts

and pseudocode [71 have been major factors in this un-

derutilization. However, automation is now available
in the form of numerous CASE tools, and recent em-

pirical studies reported by Aoyama [61 and Scanlan 181

have concluded that graphical notations may indeed

improve the comprehensibility and overall productiv-

ity of software. Scanlan's study involved a well-con-

trolled experiment in which deeply nested if-then-else

constructs, represented in structured flowcharts and

pseudocode, were read by' int, ermediate-level students.

Scores for the flowchart were sigmificantly higher than

those of the PDL. The statistical studies reported by

Aoyama et al. involved several tree-structured dia-

grams (e.g., PAD, YACC lI, and SPD) widely used in

Japan that, in combination with their environments,

have led to significant gains in productivity. The re-

sults of these recent studies suggest that the use of a

graphical notation with appropriate automated sup-

port for AdalPDL and Ada should provide significant

increases in productivity over current nongraphical

approaches.

Control Structure Diagram

Figure l(a) contains an Ada task body CONTROLLER

adapted from [91 that loops through a priority list at-

tempting to accept selectively, a REQUEST with prior-

ity P. Upon on acceptance, some action is taken,

followed by an exit from the priority list loop to restart

the loop with the first priority. In typical Ada task

fashion, the priority list loop is contained in an outer

infinite loop. This short example contains two threads
of control: the rendezvous, which enters and exists at

the accept statement, and the thread within the task

body. In addition, the priority list loop contains two

exits: the normal exit at the beginning of the loop when

the priority list has been exhausted, and an explicit
exit invoked within the select statement. While the

concurrency and multiple exits are useful in modeling

the solution, they do increase the effort required of the

reader to comprehend the code.

Figure l(b) shows the corresponding CSD generated

by the graphical prettyprinter. In this example, the in-

tuitive graphical constructs of the CSD clearly depict

the point of rendezvous, the two nested loops, the se-

continued on page 32
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]ect statement guarding the accept statement for the

task, the unconditional exit from the inner loop, and

the overall control flow of the task. When reading the

code without the diagram, as shown in Figure HaL the

control constructs and control paths are much less vis-

ible although the same structural and control infor-

mation is available. As additional levels of nesting and

increased physical separation of sequential components

occur in code, the visibility of control constructs and

control paths becomes increasingly obscure, and the ef-

fort required of the reader dramatically increases in
the absence &the CSD.

Now that the CSD has been briefly introduced, the

various CSD constructs for Ada are presented in Fig-

ure 2. Since the CSD is designed to supplement the se-

mantics of the underlying Ada, each of the CSD

constructs is self-explanatew and are presented with-

out further description.

Automated Support -- The CSD
Graphical Prettyprinter

Automated support is a requirement, at least in the

in professional ranks, for widespread utilization of

any graphical representation. Without automated

support, diagrams are difficult to construct and main-

tain from the standpoint of"living" formal documen-

tation, although software practitioners may use

several types of diagrams informally during design

task CONTROLLER is

entry P.EQUEST(PRIORITY_

end;

(D:DATA);

task body CONTROLLER is

begin

loop

for P in PRIORITY loop

select

accept REQUEST(P> (D:DATA) do

ACTION (D) ;

end;

exit:

else

null:

end select;

end loop;

end loop;

en_ CONTROLLER;

Figure HaL Add source code for (.ask co;':'rv,ot.t.af_

and even imp]ementation. Automated support comes

in many forms, ranging from general-purpose "draw-

ing aids" to automatic generation and maintenance

based on changes to source code. The CSD for Ada is

currently supported by an operational prototype

graphica] prettyprinter that accepts Ada source code

as input and generates the CSD in a manner similar

to text-based prettyprinters. The prototype was im-

plemented under DEC's VAX VMS using a scanner/

parser generator and an Ada grammar. The user in-

terface was built using DEC's VAX Curses, and to pro-

The potential of the CSD is

best realized during detailed

design, implementation,

verification, and maintenance.

vide the user with interactive viewing of the CSD, a

special version of DEC's EVE editor was generated.

Custom fonts for the CSD graphics characters were
built for both the VT220 terminal and the HI' Laser

Jet printer. Using font-oriented graphics characters

rather than bit-mapped images provided for a high

degree of efficiency in generating the diagrams.

coHltnllcd oil .O(_A'¢' .'I_

/'task CONTROLLE_ I _':

_e -entry REQUEST(PRIOI_ITY) (D:DATA) ;
d:

/task body CONTROLLER _s

IDegin

_-- loop

----_for P in PRIORITY loop

lJ_( select

--0

4- ---f/ accept REQUEZT (P) (D :DATA) 60

lend:

_" -- exit;

-}2
null;

end select;

en_ loop;

end loop;

_end CONTROLLER:

Figure l(b). Control structure diagram of Ada source c(_c fi,r

LaskcoN_HOI.I.ER
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Control Structure Diagram for Ada

~- PROCEDURE

procedure x is

begin

S;

_- s:

e_n(:Sx;

-- PACKAGE

Y is

tion Z return

Boolean ;

-- SEQUENCE

S;

S;

S:

-- SELECTION

i_ S;s;Cthen

end if/

-- S;

-- CASE

,s
) Q-.--]when CI ->

en C2 ->

ase;

-- FOR

'/_.Zs[ in R loop
s;

t_dS[oop:
_--- S;

-- WHILE

S:

_lSwhile C loop

S;

S;

end loop;

F--s:

-- INFINITE LOOP

5 );oop
S;

_-- s:
d loop;

_--_ S;

Figure 2. Control structure diagram constructs for Ada.

-- LOOP EXIT

S:

S;

j_ exiC when C:

I I_--- S:

[lena :oo_;

r--- S;

-- BLOCK

begir,

5;

S:

H---s;

-- BLOCK WITH DECLAP.ATIONS

declare

[ ] C : INTEGER;

S;

5;

_-- s;

-- GO TO

_ <<L>>

S;

• _oto L;

-- RAISE

S;

• - false Err;

-- EXCEPTION' HANDLER

5;

except i On

_{?]when Err] ->

en Err2 ->

5;

-_en Err3 ->

end;

-- TASK SPECIFICATION

/-

//task hOOF Y is

e_negin

S;
S;

d:

-- RENDEZVOUS {RECEIVER)

) }---s:

-- TERMINATE ALTERNATIVE

( _ end select,"

I F--s;

-- SELECT

I _S;

select

] else

-- GUARDED SELECT

-- S;

select

M do

-- S;

or

when C2 ->

N do

end select;

-- ABORT

t/_a--_boOy P is

Ibegin

S_ P:

Lend;
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Control Structure Diagrams for Ada

The prototype is currently being ported to the Sun-4

workstation under UNIX and X Windows, where en-

hancements will include an option to collapse the diagram

around any control constructs and an option to generate

an intermediate level architectural diagram that indicates

control structure among subprograms and tasks.

Conclusions and Directions

A new graphical tool that maps directly to Ada was for-

mal]y defined and automated. The CSD offers advantages

over previously available diagrams in that it combines the

best features of PDL and code with simple intuitive graphi-

cal constructs. The potential of the CSD can be best realized

during detailed design, implementation, verification, and
maintenance. The CSD can be used as a natural extension

to popular architectural-level representations such as data

flow diagrams, Booch diagrams, and structure charts.

Our current reverse engineering project, GRASP/Ada

[10], is focused on the generation of multilevel and

multiview graphical representations from Ada source
code. As indicated in GRASP/Ada overview shown in

Figure 3, the CSD represents the code/PDL level dia-

gram generated by the system. Our present efforts
are concentrated on the extraction of architectural-

and system-level diagrams such as structure charts.

Booch diagrams, and data flow diagrams. The reverse

engineering of graphical representations is destined

to become an integral component of CASE tools, which

until recently have focused on forward engineering.
The development of tools that provide for interactive

automatic updating of charts and diagrams will serve

to improve the overall comprehensibility of software

and, as a result, improve reliability and reduce the
cost of software.

The reverse engineering of

graphical representations is
destined to become an

integral component of CASE

tools, which until recently

have focused on forward

engineering.

System_
Diagrams DFD's

I Phase--_ _ _ "_

A_hitectural_"-_ ___"_ '_

Figure 3. Overview of the GRASWAda reverse engineering project.
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Appendix C

Extended Examples

The examples in this Appendix were extracted from a set of Ada source code files

provided by NASA to test the CSD generator. These examples were used in Section 5 to

illustrate the User Interface.



*** GRASP/ADA Vl.0 *** File: aerodap.a.csd Page:

with LEVELA_CONSTANTS;

use LEVEL A CONSTANTS;

with DATA_TYPES;

use DATA_TYPES;

with FSW_POOL;

use FSW_POOL;
with IL_POOL;

use IL_POOL;

with SIM_POOL;

use SIM_POOL;

with MATH_PACKAGE;

use MATH_PACKAGE;

with QUATERNIONOPERATIONS;

use QUATERNION_OPERATIONS;

with DOUBLE_PRECISION_MATRIX_OPERATIONS;

use DOUBLE_PRECISION_MATRIX_OPERATIONS;

with SINGLE_PRECISION_MATRIX_OPERATIONS;

use SINGLEPRECISION_MATRIX_OPERATIONS;

[package body AERO_DAP_PACKAGE is

FIRST_PASS : BOOLEAN_32 := TRUE;
.....................

-- FIRST PASS FLAG --
.....................

TRIM_ERROR_L : SCALAR SINGLE := 0.0;
............................

-- PITCH CHANNEL VARIABLE --
............................

KP RCS : INTEGER := 0;
................................

-- JET SELECT LOGIC VARIABLES --

................................

KQ_RCS : INTEGER := 0;

KR_RCS : INTEGER := 0;

ALPHA_DAP : SCALAR_SINGLE := 0.0;
........................................................................

-- THIS NEXT SECTION OF VARIABLES HAS BEEN ADDED TO THIS PORTION OF --

-- OF THE PACKAGE IN ORDER TO PROVIDE A DUMP OF THESE VARIABLES, --
-- NOT BECAUSE THEY NEED 'MEMORY' IN THE SENSE THAT THEIR VALUES --

-- MUST BE REMEMBERED FROM INVOCATION TO INVOCATION OF PROCEDURE --

-- AERO_DAP. CONSEQUENTLY, WHEN THE FLIGHT SOFTWARE IS FULLY --

-- CHECKED OUT, THESE DECLARATIONS CAN BE MOVED TO APPEAR AS LOCAL --
-- DECLARATIONS IN PROCEDURE AERO-DAP --
........................................................................

........................................

-- PROCEDURE AERO DAP LOCAL VARIABLES --
........................................

..........................

-- ALPHA, BETA, AND PHI --
..........................

BETA_DAP : SCALAR_SINGLE := 0.0;

CALPHA : SCALAR_SINGLE := 0.0;

PHI DAP : SCALAR_SINGLE := 0.0;

SALPHA : SCALAR_SINGLE := 0.0;

BETA_FCS : SCALAR SINGLE := 0.0;
...........................

-- BETA FILTER VARIABLES --
...........................

P_FCS : SCALAR_SINGLE := 0.0;
............................................

-- TRANSPORT DELAY COMPENSATION VARIABLES --
............................................



*** GRASP/ADA VI.0 *** File: aerodap.a.csd

Q__FCS : SCALAR SINGLE := 0.0;

R_FCS : SCALAR_SINGLE := 0.0;

PHI_ERROR : SCALAR_SINGLE := 0.0;

-- STABILITY AXES VARIABLES --
..............................

BANK RATE_CMD : SCALAR_SINGLE := 0.0;

BETA RATE_CMD : SCALAR_SINGLE := 0.0;

DP_CMI] : SCALAR_SINGLE := 0.0;
.........................

-- BODY AXES VARIABLES --
.........................

DQ_CMD : SCALAR_SINGLE := 0.0;

DR_CMD : SCALAR_SINGLE := 0,0;

P_CMD : SCALAR_SINGLE := 0.0;
............................

-- ROLL CHANNEL VARIABLES --
............................

P ERROR : SCALAR SINGLE := 0.0;

ALPHA_TRIM_CMD : SCALAR_SINGLE := 0.0;
.............................

-- PITCH CHANNEL VARIABLES --
.............................

ALPHA_TRIM_RATE : SCALAR_SINGLE := 0.0;

ALPHA_TRIM_ERROR : SCALAR_SINGLE := 0.0;

ALPHA_TRIM_ERROR_L : SCALAR_SINGLE := 0.0;

Q__CMD : SCALAR_SINGLE := 0.0;

Q_ERROR : SCALAR SINGLE := 0.0;
R_CMD : SCALAR_SINGLE := 0.0;

...........................

-- YAW CHANNEL VARIABLES --
...........................

R_ERROR : SCALAR SINGLE := 0.0;

DPI : SCALAR SINGLE := 0.0;
................................

-- JET SELECT LOGIC VARIABLES --

F ................................

DP2 : SCALAR SINGLE := 0.0;

DQI : SCALAR SINGLE := 0.0;

DQ2 : SCALAR SINGLE := 0.0;

DQ3 : SCALAR SINGLE := 0.0;

DQ4 : SCALAR SINGLE := 0.0;

DQ5 : SCALAR SINGLE := 0.0;

DQ6 : SCALAR_SINGLE := 0.0;

DR1 : SCALAR SINGLE := 0.0;

DR2 : SCALAR SINGLE := 0.0;

DR3 : SCALAR SINGLE := 0.0;

DR4 : SCALAR_SINGLE := 0.0;

DR5 : SCALAR SINGLE := 0.0;

DR6 : SCALAR SINGLE := 0.0;
-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED

-- FOR THIS APPLICATION

use SINGLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;

use DOUBLE_PRECISIONMATRIXOPERATIONS.REAL_MATH_LIB;
................................................................

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED --

-- BY procedure AERO DAP. THEY ARE POSITIONED EXTERNAL TO --

-- PROCEDURE AERO_DAP SO THAT THEIR VARIABLES WILL EXIST --

-- BEYOND THE TIME WHEN THE PROCEDURE IS EXECUTING --
................................................................

lpackage BETA FILTER PACKAGE is

Page :



*** GRASP/ADAVl.0 ***

[package AERO_ANGLE_EXTRACT_PACKAGE

l procedure AERO_A.NGLE_EXTt_CT;

end AERO_ANGLE_EXTRACT_PACKAGE;

package TR._S_DELAYCOMP_PACKAGE is

package STAB_AXES_CMD_PACKAGE is

l procedure STAB_AXES_CMD;

Lend STAB_AXES_CMD_PACKAGE;

Ilpackage JET SELECT LOGIC PACKAGE is

procedure JET_SELECT_LOGIC;

lend JET_SELECT_LOGIC_PACKAGE;
........................................

-- BODIES OF PACKAGES SPECIFIED ABOVE --
........................................

File: aerodap.a.csd

is

Page:

package body AERO_ANGLE_EXTRACT_PACKAGE is

......................................

-- LOCAL - POSITIONED HERE FOR DUMP --
......................................

UNIT X VR : SINGLE_PRECISION_VECTOR3;

UNIT_Y_BODY_ININERTIAL : SINGLE_PRECISION_VECTOR3;

UNIT_Y_VR : SINGLE_PRECISION_VECTOR3;

UNIT_Z_DCL : SINGLE_PRECISION_VECTOR3;
UNIT Z VR : SINGLE_PRECISION VECTOR3;

VREL_BODY : SINGLE_PRECISION_VECTOR3;

_rocedure AERO_ANGLE_EXTRACT is

begin
....................................

-- RELATIVE VELOCITY IN BODY AXES --
....................................

-- VREL BODY := Q_FORM(Q_POSE(Q_B TO I),DOUBLE TO SINGLE(V_REL_NAV));
..........................

_-- ALPHA, BETA, AND PHI --

ALPHA DAP := A,RCT_,I2(V'REL BODY(3),V'REL BODY(l)) * R_ TO DEG;

_ BETA DAP := SCALAR_SINGLE(ASIN(VREL_BODY(2) / V REL I_G)
RAD TO DEG);

UNIT Y_BODY IN INERTIAL := Q FORM(Q B_TO I,Y_BODY);

UNIT X VR := DOUBLE TO SINGLE(UNIT(V REL NAV));



*** GRASP/ADAVl.0 *** File: aerodap.a.csd Page:

-- UNIT_Y_VR:= DOUBLETO SINGLE(UNIT(CROSS_PRODUCT(UNIT_X_VR,UNIT_R)))

-- UNIT_Z_VR:= UNIT(CROSSPRODUCT(UNIT_XVR,UNIT_Y_VR));
-- UNIT_Z_DCL:= UNIT(CROSSPRODUCT(UNIT_Y_BODY_IN_INERTIAL,UNITX VR))

-- PHI DAP:= ARCTAN2(DOTPRODUCT(UNIT_Z_DCL,UNIT Y_VR),DOT_PRODUCT(
UNIT_Z_DCL,-UNIT_Z_VR)) * RAD_TODEG;

.........................................

-- CALCULATE SINE AND COS OF ALPHA DAP --
.........................................

-- CALPHA := COS(ALPHA_DAP * DEG_TO_RAD);

SALPHA := SIN(ALPHA_DAP * DEG_TO_RAD);

end AERO_ANGLEEXTRACT;

end AERO_ANGLE_EXTRACT_PACKAGE;

Ipackage body BETA_FILTER_PACKAGE is

BETA_NODE : SCALAR_SINGLE := 0.0;

FIRST_PASS : BOOLEAN_32 := TRUE;

procedure BETA_FILTER is

begin
........................

-- CALCULATE BETA_FCS --
........................

--< if (QBAR NAV > QBAR_BETA_FILT_ON) then

_ FIRST_PASS then

BETA_FCS := 0.0;

FIRST_PASS := FALSE;

BETA_FCS := BETA_NODE * (K_BETA_FILT(1) * BETA_DAP);

end if;

BETA_NODE := (K_BETA_FILT(2) * BETA_DAP) * (K_BETA_FILT(3) *
i

_ • BETA_FCS);

:L
_-else

I _ BETA FCS := BETA DAP;

Lend if;

I Lend BETA FILTER;
uend BETA FITTER PACKAGE;

Ipackage TRANS_DELAY_COMP_PACKAGE isbody

........................................................

-- LOCAL TO TRANS_DELAY_COMP - POSITIONED HERE FOR DUMP
........................................................

ROLL_ACCEL : SCALAR_SINGLE := 0.0;
PITCH_ACCEL : SCALAR_SINGLE := 0.0;

YAW_ACCEL : SCALAR_SINGLE := 0.0;

procedure TRANS_DELAY_COMP is

..................................................................

ROLL ACCEL := ROLL ACCEL NOM * SIGND'M(KP RCS);
u_-- PITC[ ACCEL := PIT_H ACCEL_NOM * SIGNUM(KQ_RCS);



*** GRASP/ADAVl. 0 *** File: aerodap.a.csd Page:

I k-- YAW ACCEL := YAW_ACCEL_NOM * SIGNUM(KR_RCS);

I _ P_FCS := BODY_RATE(l) * (ROLL_ACCEL * DT_AERODAP);i Q_FCS := BODY_RATE(2) * (PITCH_ACCEL * DT_AERODAP);
, R FCS := BODY_RATE(3) * (YAW_ACCEL * DT_AERODAP);

L Lend TRANS_DELAY_COMP;
end TRANS_DELAY_COMP_PACKAGE;

Ipackage body STAB AXES_CMD_PACKAGE is

-- LOCAL TO STAB_AXES_CMD - POSITIONED HERE FOR DUMP --
.......................................................

PHI_DELTA : SCALAR SINGLE := 0.0;

PHI SHORTEST : SCALAR_SINGLE := 0.0;

N_IS0 : constant SCALAR_SINGLE := 180.0;

N_360 : constant SCALAR_SINGLE := 360.0;

procedure STAB_AXES_CMD is

begin
.............................................................

-- DETERMINE CORRECT BANK ERROR WITH CORRECT SIGN FOR ROLL --
.............................................................

-- PHI DELTA := PHI_CMD - PHI_DAP;

INTEGER' (SIGN(PHI_CMD)) = INTEGER' (SIGN(PHI_DAP)) then
PHI_ERROR := PHI_DELTA;

L_ else

if ( abs (PHI_DELTA) >= N_I80) then
PHI_SHORTEST := PHI_DELTA * (SIGN(PHI_DELTA) * N_360);

PHI_SHORTEST := PHI_DELTA;

L
end if ;

if ( abs (PHI_SHORTEST) < DPHI_OVER UNDER) then

-- PHI_ERROR := PHI_SHORTEST;

else

--_if LIFT_DOWN REVERSAL then
PHI_ERROR := PHI_DELTA;

i_ else

PHI_ERROR := PHI_DELTA * (SIGN(PHI_DELTA) * N_360);

end if;

end if;

end if; .............
.................................

-- CALCULATE BANK AND SIDESLIP RATE COMMAND --
BANK_RATE_CMD:= MIDVAL( -BANK_RATE_CFID_LIM,(K_PHI * PHI_ERROR),

BANK_RATE_CMD_LIM);
i
e_n BETA RATE CMD := K_BETA * BETA_FCS;

d STAB_AXES_CMD ;

Lend STAB_AXES_CMD_PACKAGE;

Ilpackage JET_SELECT_LOGIC_PACKAGE isbody

...............................

-- LOCAL TO JET_SELECT_LOGIC --
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-- POSITIONED HERE FOR DUMP --

DP ABS : SCALAR_SINGLE := 0.0;
DQ ABS : SCALAR_SINGLE := 0.0;

DR_ABS : SCALAR_SINGLE := 0.0;

DP SIGN : INTEGER := 0;

DQ_SIGN : INTEGER := 0;

DR_SIGN : INTEGER := 0;

KP RCS PAST : INTEGER := 0;

KQ_RCS_PAST : INTEGER := 0;

KR RCS_PAST : INTEGER := 0;

procedure JET_SELECT_LOGIC is

begin
.....................

-- JET LEVEL LOGIC --
.....................

-- RCS ON := (others=>OFF);

-- DP ABS := abs (DP_CMD);

-- DQ_ABS := abs (DQ_CMD);

DR_ABS := abs (DR_CMD);

DP_SIGN := SIGN(DP_CMD);

DQ_SIGN := SIGN(DQ_CMD);

DR_SIGN := SIGN(DR_CMD);

KP_RCS PAST := KP_RCS " DP_SIGN;

KQ_RCS PAST := KQ RCS * DQ_SIGN;

KR_RCS PAST := KR_RCS * DR_SIGN;

-- DETERMINE JET LEVELS --
..........................

-- HAS 1 LEVEL OF MOMENT FOR ROLL AND 3 LEVELS FOR PITCH AND YAW --
...................................................................

-- ROLL CHANNEL --

_if ((DP ABS >= DP2) or ((DP_ABS >= DPI) and (KP RCS_PAST >= i)))

[{[ then

I _ KP RCS := DP SIGN;

else

KP_RCS := 0;
U

end if;

-- PITCH CHANNEL --

if ((DQ_ABS >= DQ2) or else ((DQ_ABS >= DQI) and (KQ_RCS PAST >= I))

) then

KQ_RCS := DQ_SIGN;
i!_if ((DQ_ABS >= DQ4) or else ((DQ ABS >= DQ3) and (KQ_RCS_PAST >=

i I i i 2))) then

il i_ KQ_RCS := 2 - DQ_SIGN;
ii IL

helsif ((DQ ABS >= DQ6) or else ((DQ_ABS >= DQS) and (KQ_RCS_PAST

>= 3))) then

KQ_RCS := 3 * DQ_SIGN;

end if;

else

KQ_RCS := 0;
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t
end if ;

-- YAW CHANNEL --

if ((DR ABS >= DR2) or else ((DR_ABS >= DR1) and (KR_RCS_PAST >= I))
) then

-- KR RCS := DR SIGN;

-< if ((DR_ABS >= DR4) or else ((DR ABS >= DR3) and (KR_RCS_PAST >=
2))) then

-- KR RCS := 2 * DR_SIGN;

elsif ((DR_ABS >= DR6) or else ((DR ABS >= DR5) and (KR_RCS PAST
>= 3))) then

-- KR_RCS := 3 * DR_SIGN;

U

end if;

else

-- KR_RCS := 0;

end if ;
......................

-- JET SELECT LOGIC --
......................

-- ROLL CHANNEL --
I ..................

I < if (KP_RCS /= 0) then

-_if (KP_RCS > 0) then

i _ RCS-ON(1) := ON;
RCS_ON(2) := ON;

u] else

_-- RCS ON(3) := ON;

i _-- RCS-ON(4) := ON;

i end if ;

end if ;

PITCH CHANNEL --

_if (KQ_RCS /= O) then

if (KQ_RCS > 0) then

-_if ((KQ RCS = I) or

!_ RCS ON(5) := ON;

end if ;

(KQ RCS >= 2) then

i i RCS_ON(9) := ON;

end if ;

(KQ_RCS = 3)) then

else

((KQ_RCS = -I) or (KQ_RCS =
i i RCS ON(6) := ON;

end if;

-_if (KQ RCS <= -2) then

RCS ON(10) := ON;

end if;

-3]) then



*** GRASP/ADAVl.0 *** File: aerodap.a.csd Page: 8

i. • L

end if;

end if;

-- YAW CHANNEL --

£ (KR_RCS /= 0) then

if (KR RCS > 0) then

if ((KR_RCS = I) or

-- RCS_ON(7) := ON;
i I •

end if ;
if (KR_RCS >= 2) then
-- RCS_ON(II) := ON;

end if ;

_else

((KR_RCS = -I) or (KR_RCS =
RCS_ON(8) := ON;

end if ;

--_if (KR_RCS <= -2) then

_ _ _ RCS_ON(12) := ON;
L

!! •
i i end if ;

end if;

(KR_RCS = 3)) then

-3)) then

end if;

end JET_SELECT_LOGIC;
.....................................

-- DON'T TURN ON TWO OPPOSING JETS --
.....................................

....................................................................

-- NOT CURRENTLY POSSIBLE - CODE LEFT AS REMINDER OF LEVEL B SPEC --
....................................................................

-- IF (RCS_ON$(I:) = ON) and (RCS ON$(3:) = ON) THEN

-- RCS_ON$(I:),RCS_ON$(3:) = OFF;

-- IF (RCS_ON$(2:) = ON) and (RCS ON$(4:) = ON) THEN

RCS_ON$(2:),RCS ON$(4:) = OFF;
_d JET_SELECT_LOGICPACKAGE;

use BETA_FILTER_PACKAGE;

use AERO_ANGLE_EXTRACT_PACKAGE;

use TRANSDELAY_COMP_PACKAGE;

use STAB_AXESCMI)_PACKAGE;

use JET_SELECT_LOGIC_PACKAGE;

I procedure AERO_DAP
L
......................

i-- LOCAL PROCEDURES --
......................

is

procedure AERO_DAP_INIT;

procedure BODY_AXES_CMI);
L
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procedure BODY_AXES_Ci-_

begin

-- DAP ROLL CHANNEL --

File: aerodap.a.csd

is

Page:

-- R ERROR := R CMD - R FCS;

-- DR_CFID := K_R * R_ERROR;

end BODY_AXES_CMD;

procedure AERO_DAP_INIT is

begin

-- COPY I-LOADS --

-- DPI := DPI_AERO;

---- DQI := DQI AERO;

-- DR1 := DRI_AERO;

-- DP2 := DP2_AERO;

DQ2 := DQ2_AERO;
L

DR2 := DR2_AERO;

-- DQ3 := DQ3_AERO;

DR3 := DR3_AERO;

-- DQ4 := DQ4_AERO;

_-- DR4 := DR4_AERO;

DQ5 := DQ5_AERO;

DR5 := DR5_AERO;

DQ6 := DQ6 AERO;
DR6 := DR6 AERO;

_end AERO_DAP__NIT;

begin

-- BODY OF PROCEDURE AERO_DAP --

........................

IZ_ AERO_DAP EXECUTIVE --

-- P_CMI) := (BANK_RATE_CMD * CALPHA) * (BETA_RATE_CMD * SALPHA);

P_ERROR := P CMD - P FCS;

-- DP_CMD := K_P * P_ERROR;
.......................

-- DAP PITCH CHANNEL --
.......................

-- ALPHA_TRIM_CMD := ALPHA CMD - TRIM_ERROR_L;

-- ALPHA_TRIM_ERROR := ALPHA TRIM_CMD - ALPHA DAP;

-- ALPHA_TRIM_ERROR_L := MIDVAL( -ALPHA_ERRORLIM,ALPHA_TRIM_ERROR,

ALPHA_ERROR_LIM);
-- Q CMD := K_ALPHA * ALPHA_TRIM_ERROR_L;

-- Q ERROR := Q CMD - Q FCS;

-- DQ_CMD := K_Q * Q ERROR;

-- TRIM_ERROR L := TRIM ERROR_L * (K_ALPHA TRIM * Q_ERROR * DT_AERODAP}

-- TRIM_ERROR_L := MIDVAL(-TRIM_ERROR_LIM,TRIM_ERRORL,TRIM_ERROR_LIM)

.....................

-- DAP YAW CHANNEL --
.....................

-- R CMD := (BETA_RATE CMD * CALPHA) * (BANK_RATE_CMD * SALPHA);
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_ FIRST_PASS := FALSE;end if;

AERO_ANGLE_EXTRACT;

BETA_FILTER;

TRANS_DELAY_COMP;

STAB_AXES_CFID;

BODY_AXES_CMD;

JET_SELECT_LOGIC;

.......................................................

-- COPY CYCLES FOR PLOTTING IN EDITOR - NOT DAP CODE --
.......................................................

.......................

-- GENERAL VARIABLES --

.......................

-- ALPHA_EDIT := ALPHA_DAP;

-- BANK_KATE_CMD_EDIT := BANK_RATE_CMD;

-- BETA_EDIT := BETA_DAP;

-- BETA_FCS_EDIT := BETA_FCS;

-- BETA_RATE_CMD_EDIT := BETA_RATE_CMD;

-- PHI_EDIT := PHI_DAP;

-- PHI_ERROR_EDIT := PHI_ERROR;
............................................

-- TRANSPORT DELAY COMPENSATED BODY RATES --
............................................

-- BODY RATE_FCS_EDIT(I> := P_FCS;

-- BODY_RATE_FCS_EDIT(2) := Q_FCS;

-- BODY_RATE_FCS_EDIT(3) := R_FCS;

-- ROLL AXIS --

-- ATT_ERROR_EDIT(1) := PHI_ERROR;

-- DP_CMD_EDIT := DP CMD;

-- P_ERROR_EDIT := P ERROR;

-- PC_EDIT := P_CMD;

-- PITCH AXIS --

-- ALPHA_TRIM_CMD_EDIT := ALPHA_TRIM_CMD;

ALPHA_TRIM_ERROR_EDIT := ALPHA_TRIM_ERROR;
-- ALPHA_TRIM_RATE_EDIT := ALPHA_TRIM_RATE;

-- ATT_ERROR_EDIT(2) := ALPHA_TRIM_ERROR_L;

-- DQ_CMD_EDIT := DQ_CMD;

Q_ERROR EDIT := Q_ERROR;

_--- QC_EDIT := Q_CMD;
_-- TRIM_ERROR L EDIT := TRIM_ERROR_L;

-- YAW AXIS --

I-- ATT ERROR EDIT(3) := -BETA_FCS;
DR EDYT :: DR_C ;
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___ R ERROR EDIT := R ERROR;

R__EDIT-:= R CMD;-

_-- KQ RCS_EDIT := KQ RCS;
1 _- KR-RCS EDIT := KR RCS;

) Lend AERO_DAP;
Lend AERO_DAP_PACKAGE;

File: aerodap.a.csd Page : ii
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with system;

use system;

with component_types;

use component_types;

with logical;

use logical;
with b1553_bc;

use b1553_bc;
with unchecked_conversion;

Ipackage body BI553_COMPONENT DATA is

data: arr_64;

data_msg: arr_64;

DATA_MSG2: ARR_64;

stat_arr: arrl;

msg_count: integer;

-- A_cmd: UNSIGNED_WORD;

-- A_cmdlbk: UNSIGNEDWORD;

-- A_stat: UNSIGNED WORD;

msg_arr: art_59_65;

nmsg: integer;

wdcount: art 32;

bc_interrupt status: unsigned_word := 16#75#;

-- package int_io is new INTEGER_IO(INTEGER);

-- use int_io;
..........................................................................

procedure BI553_IMU_INTRP is

begin
t ........................................................................

-- Message 1 --

-- Set up IMU 40 msec interrupt - Data Ready Signal --
-- bc_interrupt_status := unsigned word(16#75#);

-- while (short_and(bc_interrupt_status,16#74#) /= 16#0000#) loop

-- data_msg(1) := 16#0001#;
-- Even and Odd frame data --

-- data_msg(2) := 16#1000#;
-- BIT 12 DATA READY SIGNAL - 40 MSEC --

data_msg(3) := 16#0000#;

-_ bc_store_msg(O,2,3,0,3,data_msg);

-- Data word - RT 2 Subadd 3 --

-- rcv 3 data words --

_d BC-GO;

BC INTERRUPT(bc_interrupt_status);

loop;
-- Wait for BC interrupt then --

-- change buffer --

_Z -- put(" bc interrupt_status = ");

i-- put(integer(bc_interrupt_status),4,16);

-- new_line;
end BI553_IMU_INTRP;

end bc_interrupt status loop --
Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --

-- End Message 1 --
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)rocedure BI553_IMU_INIT is

begin
..........................................................

I__ Message 2 --

-- Set up IMU Quaternion Initialization --
-- bc_interrupt status := unsigned_word(16#75_) ;

-- while (short and(bc_interrupt_status,16#74#} /= 16#0000#) loop

-- data_msg(1) := 16#0001#;
-- Even and Odd frame data --

-- data_msg(2) := 16#1002#;
-- BIT 12 DATA READY SIGNAL, BIT 1 RESET --

-- QUATERNION TO (i,0, ,0,0) --

-- data_msg(3} := 16#0000#;

Data word - RT 2 Subadd 3 --

rcv 3 data words --

i_ BC_GO ;

I_ BC_I------_ERRUPT (bc_int errupt_s tat us ) ;

U end 1oop-----_-

-- Wait for BC interrupt then --

-- change buffer --

!-- put(" bc_interrupt_status = ") ;
i-- put(integer(bc interrupt status),4,16) ;

i-- new_l ine ;
Lend B1553 IMU_INIT;

-- end bc_interrupt_status loop --
,-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --

-- End Message 2 --
.........................................................................

......................................................................

I procedure READ_IMU_DATA(IMU_DATA: out ARR 32) is

b_gin

bc interrupt_status := unsigned_word(16#75#) ;
_-- wh_le (short and(bc_interrupt_status,16#74#) /= 16#0000#) loop

_ bc_store_msg(0,2,2,1 32,data msg)

-- Data word - Rt 2 Subaddr 2 --

-- xmit 32 data words --

-- EVEN Frame Data - Subaddr 2 --

-_ bc_go ;

_ bc interrupt (bc_interrupt status)

end loop;

-- put(" bc_interrupt_status = ") ;

-- put (integer (bc_interrupt_status) ,4,16) ;

- - new Iine ;
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-- end bc_interrupt_status loop --
-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --
........................................................................

-- BC_status(A_cmd, A cmdlbk, A_stat, l);

-- put (" A_cmd = "); put(integer(A_cmd),4,16);

-- put (" A cmdlbk = "); put(integer(A_cmdlbk),4,16);

-- put _" A_stat = "}; put_integer_A_stat),4,16_;

-- new_line;

---IBC_get_msg(msg_arr);

-- msg_count := integer(msg arr(l,l));

-- put (" Message count = ");

-- put(msg count,4,16);

-- new_line;

I__ put (" Message = ");

I-- new line;

_--_for i Tn I..32 loop

1 I_-- imu data(i) := msg_arr(l,i + i);

Uend io_p;
Lend READ_IMUDATA;

........................................................................

........................................................................

................................................................

procedure THRUSTER_INIT is

begin
-- Clear thrusters in Message 2 --

'-- data_msg2(1) := 16#0000#;

-- data_msg2(2) := 16#0000#;

-- data_msg2(3) := 16#0000#;
.......................................................................

.......................................................................

......................................................................

-- THRUSTERS INITIALIZED TO ALL OFF CONDITION .........

-- bc_interrupt status := unsigned_word(16#75#);

while (short_and(bc_interrupt_status,16#74#) /= 16#0000#) loop

_ bc_store_msg(0,3,2,0,3,data_msg2);

-- Data word - Rt 3 Subaddr 2 --

-- rcv 3 data words --

bc_go;

---_ bc interrupt(bc interrupt status);

end loop;THRUSTER INIT;

-- end bc interrupt_status loop --
-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --

-- End Message 2 --

bend BI553_COMPONENT_DATA;
........................................................................

........................................................................
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Ipackage body INPUT_OUTPUT_PACKAGE is

use SCALAR_SINGLE_IO;

use SCALAR_DOUBLE_IO;

procedure PUT_LINE (X: SINGLE_PRECISION_VECTOR) is

begin

for I in X'FIRST..X'LAST loop

_end l-o_op;

-- NEW_LINE;

end PUT_LINE;

procedure PUT LINE (X: DOUBLE_PRECISION_VECTOR) is

begin

r I in X'FIRST..X'LAST loopPUT(X(I));

d loop;

-- NE_LINE;

'end PUT_LINE;

procedure PUT_LINE (MAT: SINGLE_PRECISION_MATRIX) is

begin

--_for I in MAT'FIRST(1)..MAT'LAST(1) loop

fo_ i MAT'FIRST(2)..MAT'LAST(2) loop

__PUT (MAT (I, J) ) ;

li U end loop;

e_n NEW-LINE;

d loop;

[
---_ NEW LINE;

end PUT_LINE;

procedure PUT_LINE (MAT: DOUBLE_PRECISION_MATRIX) is

begin

-_for I in MAT'FIRST(!)..MAT'LAET(1) loop

_for J in MAT'FIRST(2)..MAT'LAST(2) loop

NEW_LINE;
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Lend PUT_LINE ;
end INPUT_OUTPUTPACKAGE ;

File: io.a.csd Page:
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with LEVEL_ACONSTANTS;
use LEVELA_CONSTANTS;
with DATA_TYPES;
use DATATYPES;
with FEWPOOL;
use FEW_POOL;
with IL_POOL;
use IL_POOL;
with TEXT_IO;
use TEXTIO;
with INPUT_OUTPUT_PACKAGE;
use INPUT_OUTPUT_PACKAGE;
with MATH_PACKAGE;
use MATH_PACKAGE;
with QUATERNION_OPERATIONS;
use QUATERNION_OPERATIONS;
with SINGLE_PRECISION_MATRIX_OPERATIONS;
use SINGLE_PRECISION_MATRIXOPERATIONS;
with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIXOPERATIONS;

[package body PRED_GUID_PACKAGE
is

APOGEE_EPSILONI : SCALAR SINGLE := 25.0;

-- FUNCTION: NUMERIC PREDICTOR/CORRECTOR AEROBRAKING GUIDANCE --
................................................................

.......................................................

-- ILOADS - MOVE TO ILPOOL IF RETAIN THIS ALGORITHM? --
.......................................................

APOGEE_EPSILON2 : SCALAR_SINGLE := 1.0;

BANK_MAX : SCALAR_SINGLE := 165.0;

BANK_MIN : SCALAR_SINGLE := 15.0;

CORRIDOR MIN : constant SCALAR_SINGLE := 0.05;

CORRIDOR_V_MAX : constant SCALAR_SINGLE := 34 000.0;

CORRIDOR V MIN : constant SCALAR_SINGLE := 26500.0;

DELTA PHI MIN : SCALAR_SINGLE := 1.0;

DELTA_T_PRED : constant SCALAR_SINGLE := 2.0;

G_RUN GUIDANCE : SCALAR_SINGLE := 0.075;

GUID_PASS LIM : constant INTEGER := I0;

LIFT_INC_CAPTURE : SCALAR_SINGLE := 0.15;

LIFT_PERCENT_CAPTURE : SCALAR_SINGLE := 0.5;

MAX_NUMBER_RUNS : constant INTEGER := 5;

PHI_LIFT_DOWN : constant SCALAR_SINGLE := 45.0;

VI_LIFT_DOWN : constant SCALAR_SINGLE := 27500.0;

VI MODEL_LIFT_DOWN : constant SCALAR_SINGLE := 27900.0;

COS_PHI_MAX : SCALAR SINGLE := 0.0;
.....................

-- LOCAL VARIABLES --
.....................

COS_PHI_MIN : SCALAR SINGLE := 0.0;

GUID_PASS : INTEGER := 0;

INITIALIZE_GUIDANCE : BOOLEAN_32 := TRUE;

MODEL LIFT_DOWN : BOOLEAN_32 := TRUE;

PHI_CMI)_NS : SCALAR_SINGLE := 0.0;

SIGN_OF_BANK : SCALAR_SINGLE := 0.0;

FIRST TIME_CALLED : BOOLEAN 32 := TRUE;

EARTH_POLE : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);

EARTH OMEGA : DOUBLE PRECISION_VECTOR3 := (others=>0.0);

' ZERO : constant SCALAR_SINGLE := 0.0;
..............................................................

-- NUMERICAL CONSTANTS USED IN PACKAGE --

-- This is necessary because of the overloading of operator --

Page:
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-- symbols to allow mixed mode arithmetic between single- --

-- precision and double-precision variables. --
......................

ONE_TENTH : constant SCALAR_SINGLE := 0.i;

ONE_HALF : constant SCALAR SINGLE := 0.5;
ONE: constant SCALAR_SINGLE := 1.0;

TWO : constant SCALAR_SINGLE := 2.0;

THREE : constant SCALAR SINGLE := 3.0;

FIVE : constant SCALAR_SINGLE := 5.0;

N25 000 : constant SCALAR_SINGLE := 25000.0;

N26_000 : constant SCALAR_SINGLE := 26000.0;

N27 000 : constant SCALAR_SINGLE := 27000.0;

N29_000 : constant SCALAR_SINGLE := 29000.0;

N30_000 : constant SCALAR SINGLE := 30000.0;

N33_850 : constant SCALAR_SINGLE := 33850.0;

NI50_000 : constant SCALAR SINGLE := 150 000.0;

N400_000 : constant SCALAR SINGLE := 400 000.0;
....................................

-- USE OUTPUT ROUTINES FROM INPUT_OUTPUT_PACKAGE --
.................................

use INPUT OUTPUT_PACKAGE.INT IO;

use INPUT OUTPUT_PACKAGE.SCALAR_SINGLEIO;
..................................................................

-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED --

-- FOR THIS APPLICATION --

..................................................................

use SINGLE PRECISION MATRIX OPERATIONS.REAL MATH_LIB;
use DOUBLE PRECISION_MATRIXOPERATIONS.REAL_MATH_LIB;

-- LOCAL FUNCTION --

function ALTITUDE (R: DOUBLE_PRECISION_VECTOR3) return SCALAR_DOUBLE ;

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED BY --

-- procedure PRED_GUID. THEY ARE POSITIONED EXTERNAL TO procedure --

-- PRED GUID SO THAT THEIR VARIABLES WILL EXIST BEYOND THE TIME --
-- WHEN THE PROCEDURE IS EXECUTING. --
....................................................................

l[package PC SEQUENCER_PACKAGE is

L I procedure PC_SEQUENCER;

end PC SEQUENCER_PACKAGE ;

[ipackage LATERAL_CONTROL_ PACKAGE is

Len! -p_du--_ec_A_oLP__ p _L ;

use PC_SEQUENCER_PACKAGE ;

use LATERAL_CONTROL_PACKAGE ;
......................................

-- BODY OF FUNCTION SPECIFIED ABOVE --

......................................

I function ALTITUDE (R: DOUBLE_PRECISION_VECTOR3) return SCALARDOUBLE
f

is
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RM : SCALAR_DOUBLE;

begin
...................................................

-- COMPUTES THE ALTITUDE ABOVE FISCHER ELLIPSOID --
...................................................

RM := VECTOR_LENGTH(R);
-- return (RM / EARTH R - (ONE - EARTH_FLAT) / SQRT(ONE / ((ONE -

EARTH_FLAT)**2 - ONE) / (ONE / (DOT PRODUCT((R / RM),EARTH_POLE)**2)

)));
end ALTITUDE ;

........................................ BODIES OF PACKAGES SPECIFIED ABOVE

IIpackage body PC_SEQUENCER_PACKAGE is

................................................

- LOCAL VARIABLES - POSITIONED HERE FOR DUMP -

APOGEE BRACKET : array(l..2) of SCALAR_SINGLE;

APOGEE_EPSILON : SCALAR_SINGLE;
APOGEE_EXTRAPOLATE : array(l..2) of SCALAR SINGLE;

APOGEE_PREDICTED : SCALAR_SINGLE;
BRACKETED : BOOLEAN_32;

COS_CAPT : SCALAR_SINGLE;

COS BRACKET : array(l..2) of SCALAR_SINGLE;

COS_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;

COS PHI_TRY : array(l..10) of SCALAR SINGLE;

DELTA_APOGEE : SCALAR_SINGLE;

DELTA_PHI : SCALAR_SINGLE;

I : INTEGER;

INTEG_LOOP : INTEGER range 1..4;

NUMBER_CAPT : INTEGER;

NUMBER_GOOD : INTEGER;

NUMBER_HIGH : INTEGER;

NUMBER LOW : INTEGER;

PHI_TRY : SCALAR_SINGLE;

PHI_TRY_LAST : SCALAR_SINGLE;

PRED_CAPTURE : BOOLEAN 32;
..........................................................................

-- LOCAL PROCEDURES CALLED BY procedure PC_SEQUENCER. --
-- APPEAR HERE IN PACKAGE FORMAT SO THAT VARIABLES WILL BE AVAILABLE --

-- FOR DUMPS AND SO THAT VARIABLE VALUES WILL EXIST BETWEEN INVOCATIONS --

-- OF THESE PROCEDURES BY procedure PC_SEQUENCER. --
..........................................................................

Ipackage PREDICTOR_PACKAGE is

IIpackage CORRECTOR_PACKAGE is

IendP___RC_E_CC_ ;

use PREDICTORPACKAGE;

use CORRECTORPACKAGE;
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Ipackage body PREDICTOR_PACKAGE is

............................................

-~ LOCAL TO PREDICTOR - POSITIONED HERE FOR DUMP --
...................................

A_PRED : DOUBLE_PRECISIONVECTOR3;

ALT_PRED : SCALAR_DOUBLE;

GAMMA_PRED : SCALAR_SINGLE;

LOD_PRED : SCALAR_SINGLE;

PHI_PRED : SCALAR_SINGLE;

R PRED : DOUBLE_PRECISION_VECTOR3;

R MAG_PRED : SCALAR_DOUBLE;

RDDOT PRED : SCALAR SINGLE;

RDOT PRED : SCALAR_SINGLE;

T PRED : SCALAR_DOUBLE;

V MAG_PRED : SCALAR_DOUBLE;

V PRED : DOUBLE_PRECISION_VECTOR3;

-- INTEGRATOR PROCEDURE CALLED BY procedure PREDICTOR. --
-- APPEARS HERE AS A PACKAGE SO THAT ITS VARIABLES WILL RETAIN --

-- THEIR VALUES BETWEEN INVOCATIONS OF THE PROCEDURE BY PREDICTOR. --
.....................................................................

[[package INTEGRATOR_PACKAGE is

procedu______rreINTEGRATOR;

Lend INTEGRATOR PACKAGE;

Ipackage body INTEGRATOR_PACKAGE is

....................................................................

.... VARIABLES ARE DECLARED AND POSITIONED HERE SO THAT THEIR VALUE

--S -- WILL EXIST FROM INVOCATION TO INVOCATION OF procedure INTEG
--RATOR ...........................................................

ACCUM_ACCEL : DOUBLE_PRECISION VECTOR3;

ACCUM_VEL : DOUBLE_PRECISION_VECTOR3;

ORIG POS : DOUBLE PRECISION VECTOR3;

ORIG VEL : DOUBLE_PRECISION VECTOR3;

procedure INTEGRATOR is

begin
case INTEG_LOOP is

----_--when 1 =>

-- ORIG_POS := R_PRED;

-- ORIG_VEL := V_PRED;

-- ACCUM VEL := V_PRED;

-- ACCUM_ACCEL := A_PRED;

-- R PRED := ORIG POS * ONE_HALF _ DELTA_T_PRED * V_PRED;

-- V__PRED := ORIG_VEL * ONE HALF * DELTA T PRED * A_PRED;

when 2 =>

_-- ACCUM_VEL := ACCUM VEL * TWO * V_PRED;
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_ ACCUM ACCEL := ACCUM ACCEL * TWO * A_PRED;

R PRED := ORIG POS *--ONE HALF * DELTA_T_PRED * V PRED;

V_-PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;

_--__when 3 =>

ACCUM VEL := ACCUM_VEL * TWO * V_PRED;

i _-- ACCUM ACCEL := ACCUM_ACCEL * TWO * A_PRED;

i _-- R PRED := ORIG POS * DELTA T PRED * V PRED;
[ _--V--PRED := ORIG-VEL * DELTA-T--PRED * A_PRED;

i ....[
en 4 =>

R PRED := ORIG_PO$ / (ACCUM VEL + V PRED) * DELTA T PRED

/ 6.0;
V PRED := ORIG_VEL / (ACCUM ACCEL + A PRED) *

-- DELTA T_PRED / 6.0;

_--_when others =>
i i-- INTEG LOOP can only have values in the range 1..4

i _ null;-

len_e_dNT_TOR ;

end INTEGRATOR_PACKAGE;

use INTEGRATOR_PACKAGE;

procedure PREDICTOR is

__******************__

begin
.......................................

-- INITIALIZE PREDICTOR STATE VECTOR --
.......................................

R_PRED := R_NAV;

R_MAG_PRED := VECTOR_LENGTH (R_PRED) ;

-- ALT PRED := ALTITUDE(R PRED) ;

-- V PRED := V_NAV;

-- V_MAG_PRED := VECTOR_LENGTH (V PRED) ;

PHI PRED := PHI TRY * SIGN_OF_BANK;

T PRED := T GMT;

LOD PRED := CL NAV / CD_NAV;

-- PRED_CAPTURE := FALSE;

-- PREDICTOR LOOP --

--_ for TIME_INCREMENT in I..750 loop
II ............................................

-- INTEG_LOOP := INDEX;
-- declare

AERO_ACCEL : DOUBLE_PRECISION VECTOR3;

ALT_NORM_PRED : SCALAR_SINGLE;

CPHI : SCALAR SINGLE;

DRAG_ACCEL : SCALAR SINGLE;

GRAV_ACCEL : DOUBLE PRECISION_VECTOR3;

HS NORM_PRED : SCALAR_SINGLE;

I_LAT : DOUBLE_PRECISION_VECTOR3;

I LIFT : DOUBLE_PRECISION_VECTOR3;

I_VEL : DOUBLE PRECISION VECTOR3;

LIFT_ACCEL : SCALAR SINGLE;

RHO EST : SCALAR SINGLE;
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RHO NOM : SCALAR SINGLE;

SPHI : SCALAR SINGLE;

U PRED : DOUBLE_PRECISION_VECTOR3;

V_REL_MAG_PRED : SCALAR_DOUBLE;

V REL_PRED : DOUBLE PRECISION_VECTOR3;

Z_PRED : SCALAR_DOUBLE;

begin

-- RELATIVE VELOCITY --

-- V_REL_PRED := V_PRED - CROSS_PRODUCT(EARTH_OMEGA, R_PRED)

-- V REL MAG_PRED := VECTOR_LENGTH(V REL_PRED);
........................................

-- 1962 STANDARD ATMOSPHERE CURVE FIT --
........................................

--ALT_NORM_PRED := SCALAR_SINGLE(ALT_PRED / H_REF);

-- HS_NORM_PRED := (((C_HS(5) * ALT_NORM_PRED + C_HS(4)) *
ALT_NORM_PRED + C_HS (3)) * ALT_NORM_PRED + C_MS (2) ) "

ALT_NORM_PRED ÷ C_HS (I) ;

-- RHO NOM := RHO_REF / EXP((ONE - ALT_NORM_PRED) /
HS_NORM PRED);

.......................

-- ESTIMATED DENSITY --

-- RHO_EST := K_RHO NAV * RHO_NOM;

-- LIFTDOWN MODEL --

_ MODEL_LIFT DOWN = TRUE and V_MAG_PRED < VI LIFT_DO_

then

PHI_PRED := PHI_LIFT_DOWN * SIGN OF BANK;

end if;

-- CPHI := COS(PHI_PRED * DEG TO KAD);

-- SPHI := SIN(PHI_PRED * DEG TO R/dg);
...............................

-- AERODYNAMIC ACCELERATIONS --
........................

-- DRAG_ACCEL := SCALAR SINGLE((ONE_HALF * RHO_EST *

V REL_MAG_PRED**2 * CD_NAV * S_REF) / MASS NAV);

-- LIFT ACCEL := LOD PRED * DRAG_ACCEL;
I_VEL := V REL_PRED / V_REL_MAG_PRED;

I_LAT := UNIT(CROSS PRODUCT(I_VEL,R PRED));

i I_LIFT := UNIT(CROSS PRODUCT(I_LAT, I_VEL)) * CPHI *

I LAT * SPHI;

AERO ACCEL := LIFT_ACCEL * I_LIFT * DRAG ACCEL * I_VEL;

GRAVITY ACCELERATION WITH J2 TERM --

U PRED := R_PRED / R_MAG_PRED;
-- Z_PRED := DOT PRODUCT(U_PRED,EARTH_POLE);

-- U PRED := U_PRED * (THREE * EARTH_J2 / TWO) / (EARTH_R /

R MAG_PRED)**2 * ((ONE * FIVE * Z_PRED**2) * U_PRED
TWO * Z PRED * EARTH_POLE);

GRAV ACCEL := -(EARTH MU / R MAG_PRED**2) * U_PRED;
........................

-- TOTAL ACCELERATION --
........................

-- A PRED := AERO_ACCEL + GRAV_ACCEL;
.................................

-- CALL RUNGA KUTTA INTEGRATOR --
..........................
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_-_ INTEGRATOR;

___ STATE PARAMETERS --R MAG PRED := VECTOR LENGTH(R_PRED);

_--- V_MAGPRED := VECTOR_LENGTH(V_PRED);

-- ALTITUDE CALCULATION --

Page:

e_n ALT_PRED := ALTITUDE(R_PRED) ;
d;

end loop;
-- declare block

-- INDEX loop; INTEG LOOP variable holds current value of INDEX
......................

-- STATE PARAMETERS --
......................

-- T PRED := T PRED ÷ DELTA_T_PRED;
-- RDOT_PRED := SCALAR_SINGLE (DOT_PRODUCT (V PRED, R_PRED) /

R_MAG PRED) ;

-- GAMMA PRED := SCALAR SINGLE(ASIN(RDOT_PRED / V MAG_PRED)) ;

?MAG PRED / (V_MAG_PRED * COS(GAMMA_PRED))''2 / R_MAG_PRED

__-- RD T_PRED :: SCAL _SINGT.E(DOT_PRODUCT(A_PRED,R_PRED) /................................

-- CHECK FOR ATMOSPHERIC EXIT --
................................

_ ALT_PRED > N400 000 and then RDOT_PRED > ZERO then
4- - i , exit ;

iL
i -- exit TIME_INCREMENT loop

end if;
...................................

-- CHECK FOR ATMOSPHERIC CAPTURE --
...................................

(RDDOT PRED < ZERO and RDOT_PRED < ZERO) or ALT_PRED <

NI50_000 then
PRED_CAPTURE := TRUE;

end if ;

-_ PRED_CAPTURE = TRUE then
4- - exit;

i -- exit TIME_INCREMENT loop

end if ;

end loop ;

-- TIME_INCREMENT loop
..............................

-- COMPUTE PREDICTED APOGEE --

I ........................

if PRED CAPTURE = TRUE then

' ! _-- APOGEE PREDICTED := -SCALAR SINGLE(T INFINITY);
_ U

.........
EXIT OCCURRED --

declare
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ECCEN_PRED : SCALAR SINGLE;

PARAMETER_PRED : SCALAR_SINGLE;

begin
-- PARAMETER_PRED := SCALAR_SINGLE((R_MAG_PRED * V MAGPRED "

COS(GAMMA_PRED))**2 / EARTH_MU);

-- ECCEN_PRED := SCALAR_SINGLE(SQRT(ONE / PARAMETER_PRED / (

TWO / R_MAG_PRED / V_MAG_PRED**2 / EARTH_MU)));

-- APOGEE PREDICTED := SCALAR_SINGLE((PARAMETER_PRED - (ONE -

ECCEN_PRED) - EARTH_R} * FT_TO_NM);

.end;

-- declare block

end if;

end PREDICTOR;

end PREDICTOR_PACKAGE;

Ipackage body CORRECTOR_PACKAGE is

-- LOCAL TO CORRECTOR - POSITIONED HERE FOR DUMP --
...................................................

DELT : SCALAR SINGLE;

RISE : SCALAR SINGLE;

RUN : SCALAR_SINGLE;

SENSITIVITY : SCALAR_SINGLE;

TRY_METHOD : INTEGER range 1..6;

procedure CORRECTOR is

begin
.............................................

-- COMPUTE PREFLIGHT PREDICTED SENSITIVITY --
.............................................

-_ if V NAV_MAG > N33_850 then
i -- SENSITIVITY := 24000.0;

elsif V_NAV MAG > N30 000 then
-- SENSITIVITY := SCALAR_SINGLE(SCALAR_DOUBLE(6.3926) * V NAV_MAG

i i SCALAR_DOUBLE(188 700.0)) ;

_elsif V_NAV_MAG > N29_000 then
i _ SENSITIVITY := SCALAR_EINGLE(SCALAR_DOUBLE(I.49013) *

i I V_NAV_MAG - SCALAR_DOUBLE (41625 .0 ) ) ;

sif V_NAV_MAG > N27 000 then

SENSITIVITY := SCALAR_SINGLE

V_NAV_MAG SCALAR_DOUBLE

_elsif V_NAV_MAG > N26_000 then

i_--- SENSITIVITY := SCALAR_SINGLE
! V_NAV_MAG SCALAR_DOUBLE

_sif V_NAV_MAG > N25_000 then

SENSITIVITY:i = 5.0;

end if ;

SCALAR_DOUBLE(0.57892) *

15200.0));

SCALAR_DOUBLE(0.42596) *

11070.0));

-- DETERMINE WAY TO MAKE NEXT GUESS --
......................................
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_Z I is declared in PC_SEQUENCER_PACKAGE and is set equal

to RUN_NUMBER in RUN_NUMBER loop
if I = 1 then

-- TRY_METHOD := i;

else

--_ if BRACKETED = TRUE then

NUMBER_LOW /= 0 then
TRY_METHOD := 2;

se

TRY_METHOD := 3;

end if;

' _ else

. _--_case MIDVAL(0,NIIMBER GOOD,2)

" I ¢--_when 1 =>

L i _ TRY METHOD := 5;
i L

en 2 =>

TRY_METHOD :=6;
t

en others =>

TRY_METHOD := 4;
• L

end case;

is

__ end if;
end if;

case TRY_METHOD is

........................................
f--R_ LASTGUESSFROMPR_'IOUSGUID_CECYCLE--

! _ COSPHITRY(1)::COS(PHIC_ * DEGTO _);
[ k

--- INTERPOLATE A HIGH GUESS AND A LOW GUESS TO TARGET APOGEE
............................................................

-- RUN := COS_BRACKET(2) COS_BRACKET(l);

_-- RISE := APOGEE_BRACKET(2) - APOGEE_BRACKET(l);

abs (RISE) < ONE TENTH then
ii RISE :: ONE_TENTH _ SIGn(RISE);
_ L

end if;

-- DELT := APOGEE TARGET - APOGEE_BRACKET(I);

i - COS PHI TRY(I) := COS BRACKET(I) / (DELT * RUN) / RISE;

-----_when 3 =>-- INTERPOLATE A HIGH GUESS AND A CAPTURED GUESS --

i I-- A % FROM HIGH GUESS --
............................................

-- COS PHI_TRY(I) := COS_BRACKET(l) * (COS_CAPT - COS_BRACKET(
i I)) * LIFT__PERCENT__CAPTURE;

¢_--when 4 =>

i .....................................-- MARCH OUT OF THE CAPTURE REGION --
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-- COS_PHI_TRY(I) := COS_CAPT - LIFT_INC_CAPTURE;

when 5 =>
...........................................................

-- EXTRAPOLATE ONE GOOD GUESS USING A STORED SENSITIVITY --
............................................

-- COS_PHI TRY(I) := COS PHI_TRY(I - i) / DELTA_APOGEE /

SENSITIVITY;

when 6 =>

EXTRAPOLATE TWO HIGH GUESSES OR TWO LOW GUESSES
.....................................................

i -- TO TARGET APOGEE --
.....................................................

-- RUN := COS_EXTRAPOLATE(2) - COS EXTRAPOLATE(l);

-- RISE := APOGEE EXTRAPOLATE(2) - APOGEE_EXTRAPOLATE(I ;

abs (RISE) < ONE_TENTH then
RISE := ONE TENTH * SIGN(RISE);

end if;

DELT := APOGEE_TARGET - APOGEE_EXTRAPOLATE(l);

i _-- COS_PHITRY(I) := COS_EXTRAPOLATE(1) / (DELT * RUN) / RISE;
U

__when others =>

TRY METHOD can only have values from 1..6

end case;

--I!i .................

NEW GUESS FOR PHI TRY --

_ COS PHI TRY(I) := MIDVAL(COS_PHI_MIN,COS PHI_TRY(I),COS_PHI_N._[);

_ PHI TRY--:= ACOS(COS_PHI_TRY(I)) _ R._ TO DEG;

I kend CORRECTOR;
Lend CORRECTOR PACKAGE;

procedure PC_SEQUENCER is

begin
.............................................

-- REINITIALIZE ARRAY OF BANK ANGLES TRIED --
.............................................

-- NUMBER HIGH := 0;

-- NUMBER LOW := 0;

-- NUMBER CAPT := 0;

NUMBER GOOD := 0;

_--- COS PHI_TRY := (others=>SCALAR SINGLE(T_INFINITY));

COS_EXTRAPOLATE := (others=>SCALARSINGLE(T_INFINITY));
COS_BRACKET := (others=>SCALAR SINGLE(T_INFINITY));

APOGEE EXTRAPOLATE := (others=>SCALAR_SINGLE(T_INFINITY));

APOGEE BRACKET := (others=>SCALAR SINGLE(T_INFINITY));

BRACKETED := FALSE:

i ........................................

J-- PREDICTOR/CORRECTOR ITERATION LOOP --

I := RUN_NUMBER;

! J.,_CORRECTOR;
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_ PREDICTOR;

.........................

-- TEMPORARY OUTPUT - NOT FLIGHT CODE --

NEW_LINE;

PUT(" TRY#/PHI/APO = ");

PUT(I);

PUT(PHI_TRY);

PUT(APOGEE_PREDICTED);

NEW_LINE;

PUTTLINE ( ,,
.........................................................

--_NEW_LINE;

if PRED_CAPTURE = TRUE then

i -- CAPTURE PREDICTED --

i _--- NUMBER_CAPT := NUMBER_CAPT + I;
i h--- COS CAPT := COS PHI TRY(I);
il - - -

else
...............................................

-- GOOD PREDICTION - SAVE PREDICTOR SOLUTION --
...............................................

-- NUMBER_GOOD := NUMBER_GOOD + i;

-- COS_EXTRAPOLATE(2) := COS_EXTRAPOLATE(l);

COS_EXTRAPOLATE(l) := COS_PHI_TRY(I);
'-- APOGEE_EXTRAPOLATE(2) := APOGEE_EXTRAPOLATE(l);

-- APOGEE_EXTRAPOLATE(l) := APOGEE_PREDICTED;

-_ if APOGEE_PREDICTED >= APOGEE_TARGET then

i -- HIGH PREDICTED APOGEE --
NUMBER_HIGH := NUMBER_HIGH ÷ I;

i _ COS_BRACKET(l) := COS_PHI_TRY(I);
APOGEE_BRACKET(l) := APOGEE_PREDICTED;

else

..........................

-- LOW PREDICTED APOGEE --
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_ NUMBER LOW := NI/MBER_LOW + I;

COS_BRACKET(2) := COS_PHI_TRY(I);

APOGEE BRACKET(2) := APOGEE PREDICTED;

end if;

end if;

_if___N__BE_R HIGH___0_and_j__N__BE_R LOW___0__r___N__BER_CAPT > 0) then

_[[ TWO PREDICTIONS BRACKET THE TARGET APOGEE --

..........................
end if;

-- APOGEE MISS --

-- DELTA APOGEE := APOGEE_PREDICTED - APOGEE_TARGET;
......................

-- DELTA BANK ANGLE --

......................

-- DELTA PHI := abs (PHI_TRY - PHI_TRY_LASTS;

-- PHI TRY_LAST := PHI_TRY;
....................................

-- SELECT APOGEE CORRECT CRITERIA --
....................................

_ V_NAV_MAG > N30_000 then
APOGEE_EPSILON := APOGEE_EPSILONI;

APOGEE_EPSILON := APOGEE_EPSILON2;

end if;

-_bif abs (DELTA APOGEE) < APOGEE_EPSILON then
.............................

-- LAST TRY WAS ACCEPTABLE --

I .............................

_-- PHI_CMD_NS := PHI_TRY;

-- return;

eisif COS_PHI_TRY(I) <= COS_PHI_MIN and DELTA_APOGEE < ZERO then

i ...........................

-- FULL LIFT UP REQUIRED --

-- PHI_CMD_NS := ACOS(COS PHI_MIN) * RAD_TO_DEG;

return;

e_sif_I____M______N__BERR_UNS then

-- LIMIT PREDICTIONS --

-- updating of a loop parameter is not allowed.

-- this should accomplish the same purpose as the

-- HAL/S code. I is tested in procedure CORRECTOR
...................................

elsif COS_PHI_TRY(I) >= COS_PHI_MAX and DELTA_APOGEE > ZERO then
.............................

-- FULL LIFT DOWN REQUIRED --
.............................

PHI_CMD NS := ACOS(COS_PHI_MAX) * RAD TO DEG;
-- return;
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-- CORRECT ON]E MORE WITHOUT PREDICTION --

..........................................

i_ CORREC_OR;
.................................

i -- TEMPORARY OUTPUT - NOT FLIGHT CODE --

i,
i_ NEW_LINE;

}! -_ PUT_LINE (

*' l -- .......................................... N

I PUT(" OUT OF PREDICTIONS - PHI_CMD = ") ;

IL PUT (PHI_TRY) ;

J NEW LINE ;

_ PUT_LINE (
II .........................................................

);
IF
IL

' PHI_CMD_NS := PHI_TRY;

_ return ;

_elsif I > 1 and DELTA_PHI < DELTA_PHI MIN and BRACKETED = TRUE

i i then
, - ---------- - ------ --DELTAPHITOOS_L TO-CONTI_E-

i PHI_CMD_NS := (PHI_TRY + PHI TRY_LAST) / TWO;

i return ;

end if ;

I _ end loop;
Lend PC_SEQUENCER ;

end PC_SEQUENCER_PACKAGE ;

[ package body LATERAL_CONTROL_PACKAGE is

13

-- FUNCTION: LATERAL CONTROL LOGIC SUBPROGRAM --

-- CONTROLS OUT_OF_PLANE VELOCITY ERROR --
....................................................

.............................................................

-- LOCAL VARIABLES POSITIONED HERE FOR DUMPING AND SO THAT --

-- VARIABLES CAN RETAIN VALUES BETWEEN INVOCATIONS --
......................................................

FIRST PASS : BOOLEAN_32 := TRUE;

CORRIDOR : SCALAR_SINGLE;
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SLOPE: SCALAR_SINGLE;

procedure LATERAL_CONTROLis

begin
-_ if FIRST_PASS= TRUEthen

-- INITIALIZE LATERALCORRIDOR --
.................................

-- SLOPE := (CORRIDOR_MAX - CORRIDOR_MIN) - (CORRIDOR V MAX -

CORRIDOR_V MIN);

-- FIRST_PASS := FALSE;

end if;
.............................

-- LATERAL CORRIDOR LIMITS --
.............................

-- CORRIDOR := SCALAR SINGLE(CORRIDOR_MIN _ (V NAV MAG - CORRIDOR_V MIN

) * SLOPE);
CORRIDOR := MIDVAL(CORRIDORMIN, CORRIDOR,CORRIDOR_MAX);

if WEDGE_ANGLE_NAV > CORRIDOR then
BANK REVERSAL --

SIGN OF BANK := SCALAR_SINGLE( -SIGN(DOT_PRODUCT(V_NAV, IHD)));

end if;

-- PHI_CMD := PHI_CMD_NS * SIGN OF BANK;
............................

-- ROLL SHORTEST DISTANCE --

I Lend LATERAL_CONTROL;
Lend LATERAL_CONTROL_PACKAGE;

-- PRED GUID EXECUTIVE --

procedure PRED_GUID is

.....................

-- LOCAL PROCEDURE --

procedure INITIAL_GUID is

...........................

-- FUNCTION: GUIDANCE INITIALIZATION --
.......................................

begin
..........................

-- INITIAL BANK COMMAND --
..........................

-- SIGN OF BANK := SCALAR_SINGLE(SIGN(DOT_PRODUCT(V_NAV, IYD)));

PHI_CMD_NS := abs (PHI EI);

-- PHI_CMD := SIGN_OF BANK * PHI_CMD NS;

-- BANK COMMAND LIMITS --

-- COS_PHI_MIN := COS(BANK MAX * DEG TO_RAD);

-- COS_PHI_MAX := COS(BANK MIN * DEG TO_RAD);

14
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end if ;
I Lend PRED_GUID;
Lend PRED_GUIDPACKAGE ;

File: predguid.a.csd

b_gLend INITIAL GUID;

in

if FIRSTTIMECALLED then

i b--- CORRIDOR_MAX := 0.7;

_-- FIRST_TIME CALLED := FALSE;end if;

]!_ INITI_I__IZE GUID_A__CE _ ,TRUE then

_2[GUID_,_CE INITIALIZATION --

_ZE GUIDANCE := FALSE;

end if;

i__ EARTH_POLE := (EF_TO_REF_AT_EPOCH(I,3),EF TO REF_AT_EPOCH(2,3),

I EF TO REF_AT_EPOCH(3,3));
EARTH OMEGA := SCALAR DOUBLE(EARTH_RATE) * EARTH_POLE;

_if_G_O_A_____GRL___GUIDANCE then

i_--R__G_IDANCE22
1 i I_-if-GUI;-;_S-_-0 then

-- RUN VERTICAL GUIDANCE --
...........................

iil-- --

i i ' PC_SEQUENCER;

end if ;
i ..........................

i -- RUN LATERAL GUIDANCE --

i ................

-_LATERM__CONTROL;

-- COUNT GUIDANCE PASSES --
...........................

-- GUID PASS := GUID_PASS + I;

GUID_PASS >= GUID PASS_LIM then
GUID_PASS := 0;

end if;
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